【更新】Jia-Bin Huang收集的计算机视觉代码库


维护地址为: https://sites.google.com/site/jbhuang0604/resources/vision

内容详实,作为入门领域的参考非常有用!


           

label topic type resource_url:url reference

Scale-invariant feature transform (SIFT) - Demo Software Feature Detection; Feature Extraction Code http://www.cs.ubc.ca/~lowe/keypoints/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.

Scale-invariant feature transform (SIFT) - Library Feature Detection; Feature Extraction Code http://blogs.oregonstate.edu/hess/code/sift/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.

Scale-invariant feature transform (SIFT) - VLFeat Feature Detection; Feature Extraction Code http://www.vlfeat.org/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.

Normalized Cut Image Segmentation Code http://www.cis.upenn.edu/~jshi/software/ J. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000

Discriminatively Trained Deformable Part Models Object Detection Code http://people.cs.uchicago.edu/~pff/latent/ P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010

PCA-SIFT Feature Extraction Code http://www.cs.cmu.edu/~yke/pcasift/ Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004

Affine-SIFT Feature Detection; Feature Extraction Code http://www.ipol.im/pub/algo/my_affine_sift/ J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009

Speeded Up Robust Feature (SURF) - Open SURF Feature Detection; Feature Extraction Code http://www.chrisevansdev.com/computer-vision-opensurf.html H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006

Speeded Up Robust Feature (SURF) - Matlab Wrapper Feature Detection; Feature Extraction Code http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006

Maximally stable extremal regions (MSER) Feature Detection; Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/research/affine/ J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002

Maximally stable extremal regions (MSER) - VLFeat Feature Detection; Feature Extraction Code http://www.vlfeat.org/ J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002

Geometric Blur Feature Detection; Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/software/MKL/ A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005

Local Self-Similarity Descriptor Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/ E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007

Global and Efficient Self-Similarity Feature Extraction Code http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010

Histogram of Oriented Graidents - INRIA Object Localization Toolkit Feature Extraction; Object Detection Code http://www.navneetdalal.com/software N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005

Histogram of Oriented Graidents - OLT for windows Feature Extraction; Object Detection Code http://www.computing.edu.au/~12482661/hog.html N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005

GIST Descriptor Feature Extraction Code http://people.csail.mit.edu/torralba/code/spatialenvelope/ A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001

Shape Context Feature Extraction Code http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002

Color Descriptor Feature Detection; Feature Extraction Code http://koen.me/research/colordescriptors/ K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010

Pyramids of Histograms of Oriented Gradients (PHOG) Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007

Space-Time Interest Points (STIP) Feature Detection; Feature Extraction Code http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zip I. Laptev, On Space-Time Interest Points, IJCV, 2005

Boundary Preserving Dense Local Regions Feature Detection Code http://vision.cs.utexas.edu/projects/bplr/bplr.html J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011

Canny Edge Detection Feature Detection Code http://www.mathworks.com/help/toolbox/images/ref/edge.html J. Canny, A Computational Approach To Edge Detection, PAMI, 1986

FAST Corner Detection Feature Detection Code http://www.edwardrosten.com/work/fast.html E. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006

Affine Covariant Features Feature Detection; Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/research/affine/ T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008

Groups of Adjacent Contour Segments Feature Detection; Feature Extraction Code http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007

Superpixel by Gerg Mori Image Segmentation Code http://www.cs.sfu.ca/~mori/research/superpixels/ X. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003

Efficient Graph-based Image Segmentation - C++ code Image Segmentation Code http://people.cs.uchicago.edu/~pff/segment/ P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004

Efficient Graph-based Image Segmentation - Matlab Wrapper Image Segmentation Code http://www.mathworks.com/matlabcentral/fileexchange/25866-efficient-graph-based-image-segmentation P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004

Mean-Shift Image Segmentation - EDISON Image Segmentation Code http://coewww.rutgers.edu/riul/research/code/EDISON/index.html D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002

Mean-Shift Image Segmentation - Matlab Wrapper Image Segmentation Code http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/edison_matlab_interface.tar.gz D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002

OWT-UCM Hierarchical Segmentation Image Segmentation Code http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011

Turbepixels Image Segmentation Code http://www.cs.toronto.edu/~babalex/research.html A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009

Quick-Shift Image Segmentation Code http://www.vlfeat.org/overview/quickshift.html A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008

SLIC Superpixels Image Segmentation Code http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010

Segmentation by Minimum Code Length Image Segmentation Code http://perception.csl.uiuc.edu/coding/image_segmentation/ A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007

Biased Normalized Cut Image Segmentation Code http://www.cs.berkeley.edu/~smaji/projects/biasedNcuts/ S. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011

Multiscale Segmentation Tree Image Segmentation Code http://vision.ai.uiuc.edu/segmentation E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009;
N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996

Entropy Rate Superpixel Segmentation Image Segmentation Code http://www.umiacs.umd.edu/~mingyliu/src/ers_matlab_wrapper_v0.1.zip M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011

Viola-Jones Object Detection Object Detection Code http://pr.willowgarage.com/wiki/FaceDetection P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR, 2001

A simple object detector with boosting Object Detection Code http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html ICCV 2005 short courses on Recognizing and Learning Object Categories

Cascade Object Detection with Deformable Part Models Object Detection Code http://people.cs.uchicago.edu/~rbg/star-cascade/ P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR, 2010

Poselet Object Detection Code http://www.eecs.berkeley.edu/~lbourdev/poselets/ L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009

Implicit Shape Model Object Detection Code http://www.vision.ee.ethz.ch/~bleibe/code/ism.html B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008

A simple parts and structure object detector Object Detection Code http://people.csail.mit.edu/fergus/iccv2005/partsstructure.html ICCV 2005 short courses on Recognizing and Learning Object Categories

Max-Margin Hough Transform Object Detection Code http://www.cs.berkeley.edu/~smaji/projects/max-margin-hough/ S. Maji and J. Malik, Object Detection Using a Max-Margin Hough Transform. CVPR 2009

Ensemble of Exemplar-SVMs Object Detection Code http://www.cs.cmu.edu/~tmalisie/projects/iccv11/ T. Malisiewicz, A. Gupta, A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond . ICCV, 2011

Recognition using regions Object Detection Code http://www.cs.berkeley.edu/~chunhui/publications/cvpr09_v2.zip C. Gu, J. J. Lim, P. Arbelaez, and J. Malik, CVPR 2009

Closed Form Matting Alpha Matting Code http://people.csail.mit.edu/alevin/matting.tar.gz A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008.

Spectral Matting Alpha Matting Code http://www.vision.huji.ac.il/SpectralMatting/ A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008

Learning-based Matting Alpha Matting Code http://www.mathworks.com/matlabcentral/fileexchange/31412 Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009

Bayesian Matting Alpha Matting Code http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001

Shared Matting Alpha Matting Code http://www.inf.ufrgs.br/~eslgastal/SharedMatting/ E. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010

Fast Bilateral Filter Image Filtering Code http://people.csail.mit.edu/sparis/bf/ S. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, ECCV, 2006

Weighted Least Squares Filter Image Filtering Code http://www.cs.huji.ac.il/~danix/epd/ Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation, SIGGRAPH 2008

Domain Transformation Image Filtering Code http://inf.ufrgs.br/~eslgastal/DomainTransform/DomainTransformFilters-Source-v1.0.zip E. Gastal, M. Oliveira, Domain Transform for Edge-Aware Image and Video Processing, SIGGRAPH 2011

Local Laplacian Filters Image Filtering Code http://people.csail.mit.edu/sparis/publi/2011/siggraph/matlab_source_code.zip S. Paris, S. Hasinoff, J. Kautz, Local Laplacian Filters: Edge-Aware Image Processing with a Laplacian Pyramid, SIGGRAPH 2011

Image smoothing via L0 Gradient Minimization Image Filtering Code http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/L0smoothing.zip L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient Minimization, SIGGRAPH Asia 2011

Guided Image Filtering Image Filtering Code http://personal.ie.cuhk.edu.hk/~hkm007/eccv10/guided-filter-code-v1.rar K. He, J. Sun, X. Tang, Guided Image Filtering, ECCV 2010

Anisotropic Diffusion Image Filtering Code http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, PAMI 1990

Real-time O(1) Bilateral Filtering Image Filtering Code http://vision.ai.uiuc.edu/~qyang6/publications/code/qx_constant_time_bilateral_filter_ss.zip Q. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering, 
CVPR 2009

SVM for Edge-Preserving Filtering Image Filtering Code http://vision.ai.uiuc.edu/~qyang6/publications/code/cvpr-10-svmbf/program_video_conferencing.zip Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering, 
CVPR 2010

Edge Foci Interest Points Feature Detection Code http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm L. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011

K-SVD Image Denoising Code http://www.cs.technion.ac.il/~ronrubin/Software/ksvdbox13.zip  

BLS-GSM Image Denoising Code http://decsai.ugr.es/~javier/denoise/  

BM3D Image Denoising Code http://www.cs.tut.fi/~foi/GCF-BM3D/  

Field of Experts Image Denoising Code http://www.cs.brown.edu/~roth/research/software.html  

Gaussian Field of Experts Image Denoising Code http://www.cs.huji.ac.il/~yweiss/BRFOE.zip  

Non-local Means Image Denoising Code http://dmi.uib.es/~abuades/codis/NLmeansfilter.m  

Kernel Regressions Image Denoising Code http://www.soe.ucsc.edu/~htakeda/MatlabApp/KernelRegressionBasedImageProcessingToolBox_ver1-1beta.zip  

Efficient Belief Propagation for Early Vision Image Denoising; Stereo Matching Code http://www.cs.brown.edu/~pff/bp/ P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Belief Propagation for Early Vision, IJCV, 2006

Clustering-based Denoising Image Denoising Code http://users.soe.ucsc.edu/~priyam/K-LLD/ P. Chatterjee and P. Milanfar, Clustering-based Denoising with Locally Learned Dictionaries (K-LLD), TIP, 2009

Sparsity-based Image Denoising Image Denoising Code http://www.csee.wvu.edu/~xinl/CSR.html W. Dong, X. Li, L. Zhang and G. Shi, Sparsity-based Image Denoising vis Dictionary Learning and Structural Clustering, CVPR, 2011

Learning Models of Natural Image Patches Image Denoising; Image Super-resolution; Image Deblurring Code http://www.cs.huji.ac.il/~daniez/ D. Zoran and Y. Weiss, From Learning Models of Natural Image Patches to Whole Image Restoration, ICCV, 2011

Hough Forests for Object Detection Object Detection Code http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/index.html J. Gall and V. Lempitsky, Class-Specific Hough Forests for Object Detection, CVPR, 2009

Lucas-Kanade affine template tracking Visual Tracking Code http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, IJCV 2002

EasyCamCalib Camera Calibration Code http://arthronav.isr.uc.pt/easycamcalib/ J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009

3D Gradients (HOG3D) Action Recognition Code http://lear.inrialpes.fr/people/klaeser/research_hog3d A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008.

Dense Trajectories Video Description Action Recognition Code http://lear.inrialpes.fr/people/wang/dense_trajectories H. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011

ClassCut for Unsupervised Class Segmentation Object Segmentation Code http://www.vision.ee.ethz.ch/~calvin/classcut/ClassCut-release.zip B. Alexe, T. Deselaers and V. Ferrari, ClassCut for Unsupervised Class Segmentation, ECCV 2010

Global and Efficient Self-Similarity Feature Extraction Code http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz T. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010

Calvin Upper-Body Detector Pose Estimation Code http://www.vision.ee.ethz.ch/~calvin/calvin_upperbody_detector/ E. Marcin, F. Vittorio, Better Appearance Models for Pictorial Structures, BMVC 2009

Horn and Schunck's Optical Flow Optical Flow Code http://www.cs.brown.edu/~dqsun/code/hs.zip  

Black and Anandan's Optical Flow Optical Flow Code http://www.cs.brown.edu/~dqsun/code/ba.zip  

Optical Flow by Deqing Sun Optical Flow Code http://www.cs.brown.edu/~dqsun/code/flow_code.zip D. Sun, S. Roth, M. J. Black, Secrets of Optical Flow Estimation and Their Principles, CVPR, 2010

L1 Tracking Visual Tracking Code http://www.dabi.temple.edu/~hbling/code_data.htm X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009

Efficient Earth Mover's Distance with L1 Ground Distance (EMD_L1) Kernels and Distances Code http://www.dabi.temple.edu/~hbling/code/EmdL1_v3.zip H. Ling and K. Okada, An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison, PAMI 2007

Diffusion-based distance Kernels and Distances Code http://www.dabi.temple.edu/~hbling/code/DD_v1.zip H. Ling and K. Okada, Diffusion Distance for Histogram Comparison, CVPR 2006

Particle Filter Object Tracking Visual Tracking Code http://blogs.oregonstate.edu/hess/code/particles/  

GPU Implementation of Kanade-Lucas-Tomasi Feature Tracker Visual Tracking Code http://cs.unc.edu/~ssinha/Research/GPU_KLT/ S. N Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, Feature Tracking and Matching in Video Using Programmable Graphics Hardware, MVA, 2007

Space-Time Interest Points (STIP) Feature Extraction; Action Recognition Code http://www.nada.kth.se/cvap/abstracts/cvap284.html I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005

KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker Visual Tracking Code http://www.ces.clemson.edu/~stb/klt/ B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981

Camera Calibration Toolbox for Matlab Camera Calibration Code http://www.vision.caltech.edu/bouguetj/calib_doc/ http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.html

The Pyramid Match: Efficient Matching for Retrieval and Recognition Feature Matching; Image Classification Code http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005

Piotr's Image & Video Matlab Toolbox Image Processing; Image Filtering Code http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html Piotr Dollar, Piotr's Image & Video Matlab Toolbox, http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Epipolar Geometry Toolbox Camera Calibration Code http://egt.dii.unisi.it/ G.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005

Matlab Functions for Multiple View Geometry Multiple View Geometry Code http://www.robots.ox.ac.uk/~vgg/hzbook/code/  

MATLAB and Octave Functions 
for Computer Vision and Image Processing
Multiple View Geometry Code http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html P. D. Kovesi. MATLAB and Octave Functions for Computer Vision and Image Processing, http://www.csse.uwa.edu.au/~pk/research/matlabfns

Motion Tracking in Image Sequences Visual Tracking Code http://www.cs.berkeley.edu/~flw/tracker/ C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking, PAMI, 2000

Boosting Resources by Liangliang Cao Machine Learning Code http://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm http://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm

Tracking with Online Multiple Instance Learning Visual Tracking Code http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml B. Babenko, M.-H. Yang, S. Belongie, Visual Tracking with Online Multiple Instance Learning, PAMI 2011

Text recognition in the wild Text Recognition Code http://vision.ucsd.edu/~kai/grocr/ K. Wang, B. Babenko, and S. Belongie, End-to-end Scene Text Recognition, ICCV 2011

Object Tracking Visual Tracking Code http://plaza.ufl.edu/lvtaoran/object%20tracking.htm A. Yilmaz, O. Javed and M. Shah, Object Tracking: A Survey, ACM Journal of Computing Surveys, Vol. 38, No. 4, 2006

Online boosting trackers Visual Tracking Code http://www.vision.ee.ethz.ch/boostingTrackers/ H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR, 2006

Kinect SDK Depth Sensor Code http://www.microsoft.com/en-us/kinectforwindows/ http://www.microsoft.com/en-us/kinectforwindows/

Statistical Pattern Recognition Toolbox Machine Learning Code http://cmp.felk.cvut.cz/cmp/software/stprtool/ M.I. Schlesinger, V. Hlavac: Ten lectures on the statistical and structural pattern recognition, Kluwer Academic Publishers, 2002

Netlab Neural Network Software Machine Learning Code http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/ C. M. Bishop, Neural Networks for Pattern RecognitionㄝOxford University Press, 1995

FastICA package for MATLAB Machine Learning Code http://research.ics.tkk.fi/ica/fastica/ http://research.ics.tkk.fi/ica/book/

MRF Minimization Evaluation MRF Optimization Code http://vision.middlebury.edu/MRF/ R. Szeliski et al., A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors, PAMI, 2008

Multi-View Stereo Evaluation Multi-View Stereo Code http://vision.middlebury.edu/mview/ S. Seitz et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006

Optical Flow Evaluation Optical Flow Code http://vision.middlebury.edu/flow/ S. Baker et al. A Database and Evaluation Methodology for Optical Flow, IJCV, 2011

Stereo Evaluation Stereo Code http://vision.middlebury.edu/stereo/ D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2001

Planar Graph Cut MRF Optimization Code http://vision.csd.uwo.ca/code/PlanarCut-v1.0.zip F. R. Schmidt, E. Toppe and D. Cremers, Efficient Planar Graph Cuts with Applications in Computer Vision, CVPR 2009

Max-flow/min-cut MRF Optimization Code http://vision.csd.uwo.ca/code/maxflow-v3.01.zip Y. Boykov and V. Kolmogorov, An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, PAMI 2004

Multi-label optimization MRF Optimization Code http://vision.csd.uwo.ca/code/gco-v3.0.zip Y. Boykov, O. Verksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Max-flow/min-cut for massive grids MRF Optimization Code http://vision.csd.uwo.ca/code/regionpushrelabel-v1.03.zip A. Delong and Y. Boykov, A Scalable Graph-Cut Algorithm for N-D Grids, CVPR 2008

Max-flow/min-cut for shape fitting MRF Optimization Code http://www.csd.uwo.ca/faculty/yuri/Implementations/TouchExpand.zip V. Lempitsky and Y. Boykov, Global Optimization for Shape Fitting, CVPR 2007

Itti, Koch, and Niebur' saliency detection Saliency Detection Code http://www.saliencytoolbox.net/ L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998

Frequency-tuned salient region detection Saliency Detection Code http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/index.html R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009

Saliency detection using maximum symmetric surround Saliency Detection Code http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/index.html R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010

Attention via Information Maximization Saliency Detection Code http://www.cse.yorku.ca/~neil/AIM.zip N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005

Context-aware saliency detection Saliency Detection Code http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.

Graph-based visual saliency Saliency Detection Code http://www.klab.caltech.edu/~harel/share/gbvs.php J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007

Saliency detection: A spectral residual approach Saliency Detection Code http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007

Segmenting salient objects from images and videos Saliency Detection Code http://www.cse.oulu.fi/MVG/Downloads/saliency E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010

Saliency Using Natural statistics Saliency Detection Code http://cseweb.ucsd.edu/~l6zhang/ L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008

Discriminant Saliency for Visual Recognition from Cluttered Scenes Saliency Detection Code http://www.svcl.ucsd.edu/projects/saliency/ D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004

Learning to Predict Where Humans Look Saliency Detection Code http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009

Global Contrast based Salient Region Detection Saliency Detection Code http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/ M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011

Spatial Pyramid Matching Image Classification Code http://www.cs.unc.edu/~lazebnik/research/SpatialPyramid.zip S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006

Locality-constrained Linear Coding Image Classification Code http://www.ifp.illinois.edu/~jyang29/LLC.htm J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010

Sparse Coding for Image Classification Image Classification Code http://www.ifp.illinois.edu/~jyang29/ScSPM.htm J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009

Texture Classification Image Classification Code http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005

Multiple Kernels Object Detection Code http://www.robots.ox.ac.uk/~vgg/software/MKL/ A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009

Feature Combination Object Detection Code http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009

SuperParsing Image Understanding Code http://www.cs.unc.edu/~jtighe/Papers/ECCV10/eccv10-jtighe-code.zip J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
Parsing with Superpixels, ECCV 2010

Objectness measure Object Proposal Code http://www.vision.ee.ethz.ch/~calvin/objectness/objectness-release-v1.01.tar.gz B. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010

Parametric min-cut Object Proposal Code http://sminchisescu.ins.uni-bonn.de/code/cpmc/ J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010

Region-based Object Proposal Object Proposal Code http://vision.cs.uiuc.edu/proposals/ I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010

Shadow Detection using Paired Region Illumination, Reflectance, and Shadow Code http://www.cs.illinois.edu/homes/guo29/projects/shadow.html R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011

Ground shadow detection Illumination, Reflectance, and Shadow Code http://www.jflalonde.org/software.html#shadowDetection J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010

Dense Point Tracking Optical Flow Code http://lmb.informatik.uni-freiburg.de/resources/binaries/ N. Sundaram, T. Brox, K. Keutzer
Dense point trajectories by GPU-accelerated large displacement optical flow, ECCV 2010

Large Displacement Optical Flow Optical Flow Code http://lmb.informatik.uni-freiburg.de/resources/binaries/ T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011

Classical Variational Optical Flow Optical Flow Code http://lmb.informatik.uni-freiburg.de/resources/binaries/ T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004

Nonlocal means with cluster trees Image Denoising Code http://lmb.informatik.uni-freiburg.de/resources/binaries/nlmeans_brox_tip08Linux64.zip T. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for denoising of textural patterns, TIP 2008

Sparse to Dense Labeling Object Segmentation Code http://lmb.informatik.uni-freiburg.de/resources/binaries/SparseToDenseLabeling.tar.gz P. Ochs, T. Brox, Object Segmentation in Video: A Hierarchical Variational Approach for Turning Point Trajectories into Dense Regions, ICCV 2011

Incremental Learning for Robust Visual Tracking Visual Tracking Code http://www.cs.toronto.edu/~dross/ivt/ D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007

MRF for image super-resolution Image Super-resolution Code http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011

Multi-frame image super-resolution Image Super-resolution Code http://www.robots.ox.ac.uk/~vgg/software/SR/index.html Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis

MDSP Resolution Enhancement Software Image Super-resolution Code http://users.soe.ucsc.edu/~milanfar/software/superresolution.html S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Fast and Robust Multi-frame Super-resolution, TIP 2004

Sprarse coding super-resolution Image Super-resolution Code http://www.ifp.illinois.edu/~jyang29/ScSR.htm J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation, TIP 2010

Self-Similarities for Single Frame Super-Resolution Image Super-resolution Code https://eng.ucmerced.edu/people/cyang35/ACCV10.zip C.-Y. Yang, J.-B. Huang, and M.-H. Yang, Exploiting Self-Similarities for Single Frame Super-Resolution, ACCV 2010

Eficient Marginal Likelihood Optimization in Blind Deconvolution Image Deblurring Code http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip A. Levin, Y. Weiss, F. Durand, W. T. Freeman. Efficient Marginal Likelihood Optimization in Blind Deconvolution, CVPR 2011

Analyzing spatially varying blur Image Deblurring Code http://www.eecs.harvard.edu/~ayanc/svblur/ A. Chakrabarti, T. Zickler, and W. T. Freeman, Analyzing Spatially-varying Blur, CVPR 2010

Radon Transform Image Deblurring Code http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip T. S. Cho, S. Paris, B. K. P. Horn, W. T. Freeman, Blur kernel estimation using the radon transform, CVPR 2011

Feature SIMilarity Index Image Quality Assessment Code http://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm  

Degradation Model Image Quality Assessment Code http://users.ece.utexas.edu/~bevans/papers/2000/imageQuality/index.html  

Structural SIMilarity Image Quality Assessment Code https://ece.uwaterloo.ca/~z70wang/research/ssim/  

SPIQA Image Quality Assessment Code http://vision.ai.uiuc.edu/~bghanem2/shared_code/SPIQA_code.zip  

Kernel Density Estimation Toolbox Density Estimation Code http://www.ics.uci.edu/~ihler/code/kde.html  

Dimensionality Reduction Toolbox Dimension Reduction Code http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html  

ISOMAP Dimension Reduction Code http://isomap.stanford.edu/  

LLE Dimension Reduction Code http://www.cs.nyu.edu/~roweis/lle/code.html  

Laplacian Eigenmaps Dimension Reduction Code http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar  

Diffusion maps Dimension Reduction Code http://www.stat.cmu.edu/~annlee/software.htm  

ANN: Approximate Nearest Neighbor Searching Nearest Neighbors Matching Code http://www.cs.umd.edu/~mount/ANN/  

FLANN: Fast Library for Approximate Nearest Neighbors Nearest Neighbors Matching Code http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN  

Bundler Structure from motion Code http://phototour.cs.washington.edu/bundler/ N. Snavely, S M. Seitz, R Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH 2006

FIT3D Structure from motion Code http://www.fit3d.info/  

Structure from Motion toolbox for Matlab by Vincent Rabaud Structure from motion Code http://code.google.com/p/vincents-structure-from-motion-matlab-toolbox/  

Structure and Motion Toolkit in Matlab Structure from motion Code http://cms.brookes.ac.uk/staff/PhilipTorr/Code/code_page_4.htm  

Nonrigid Structure From Motion in Trajectory Space Structure from motion Code http://cvlab.lums.edu.pk/nrsfm/index.html  

libmv Structure from motion Code http://code.google.com/p/libmv/  

VisualSFM : A Visual Structure from Motion System Structure from motion Code http://www.cs.washington.edu/homes/ccwu/vsfm/  

Distance Transforms of Sampled Functions Distance Transformation Code http://people.cs.uchicago.edu/~pff/dt/  

Fast Directional Chamfer Matching Kernels and Distances Code http://www.umiacs.umd.edu/~mingyliu/src/fdcm_matlab_wrapper_v0.2.zip  

K-Means - VLFeat Clustering Code http://www.vlfeat.org/  

K-Means - Oxford Code Clustering Code http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip  

Spectral Clustering - UW Project Clustering Code http://www.stat.washington.edu/spectral/  

Spectral Clustering - UCSD Project Clustering Code http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz  

Self-Tuning Spectral Clustering Clustering Code http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html  

SHOGUN Multiple Kernel Learning Code http://www.shogun-toolbox.org/ S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006

OpenKernel.org Multiple Kernel Learning Code http://www.openkernel.org/ F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011

DOGMA Multiple Kernel Learning Code http://dogma.sourceforge.net/ F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010

SimpleMKL Multiple Kernel Learning Code http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008

MIForests Multiple Instance Learning Code http://www.ymer.org/amir/software/milforests/ C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010

MILIS Multiple Instance Learning Code   Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010

MILES Multiple Instance Learning Code http://infolab.stanford.edu/~wangz/project/imsearch/SVM/PAMI06/ Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006

DD-SVM Multiple Instance Learning Code   Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004

GradientShop Image Filtering Code http://grail.cs.washington.edu/projects/gradientshop/ P. Bhat, C.L. Zitnick, M. Cohen, B. Curless, and J. Kim, GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering, TOG 2010

Biologically motivated object recognition Object Recognition Code http://cbcl.mit.edu/software-datasets/standardmodel/index.html T. Serre, L. Wolf and T. Poggio. Object recognition with features inspired by visual cortex, CVPR 2005

Ensemble of Exemplar-SVMs for Object Detection and Beyond Object Detection Code http://www.cs.cmu.edu/~tmalisie/projects/iccv11/ T. Malisiewicz, A. Gupta, A. A. Efros, Ensemble of Exemplar-SVMs for Object Detection and Beyond , ICCV 2011

Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics Image Understanding Code http://www.cs.cmu.edu/~abhinavg/blocksworld/#downloads A. Gupta, A. A. Efros, M. Hebert, Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics, ECCV 2010

Segmenting Scenes by Matching Image Composites Image Segmentation Code http://www.cs.washington.edu/homes/bcr/projects/SceneComposites/index.html B. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, NIPS 2009

Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences Illumination, Reflectance, and Shadow Code http://www.cs.cmu.edu/~jlalonde/software.html#skyModel J-F. Lalonde, A. A. Efros, S. G. Narasimhan, Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences, SIGGRAPH Asia 2009

Estimating Natural Illumination from a Single Outdoor Image Illumination, Reflectance, and Shadow Code http://www.cs.cmu.edu/~jlalonde/software.html#skyModel J-F. Lalonde, A. A. Efros, S. G. Narasimhan, Estimating Natural Illumination from a Single Outdoor Image , ICCV 2009

What Does the Sky Tell Us About the Camera? Illumination, Reflectance, and Shadow Code http://www.cs.cmu.edu/~jlalonde/software.html#skyModel J-F. Lalonde, S. G. Narasimhan, A. A. Efros, What Does the Sky Tell Us About the Camera?, ECCV 2008

Recognition by Association via Learning Per-exemplar Distances Object Recognition Code http://www.cs.cmu.edu/~tmalisie/projects/cvpr08/dfuns.tar.gz T. Malisiewicz, A. A. Efros, Recognition by Association via Learning Per-exemplar Distances, CVPR 2008

Recovering Occlusion Boundaries from a Single Image Image Segmentation Code http://www.cs.cmu.edu/~dhoiem/software/ D. Hoiem, A. Stein, A. A. Efros, M. Hebert, Recovering Occlusion Boundaries from a Single Image, ICCV 2007.

Using Multiple Segmentations to Discover Objects and their Extent in Image Collections Object Discovery Code http://people.csail.mit.edu/brussell/research/proj/mult_seg_discovery/index.html B. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, CVPR 2006

Image Quilting for Texture Synthesis and Transfer Texture Synthesis Code http://www.cs.cmu.edu/~efros/quilt_research_code.zip A. A. Efros and W. T. Freeman, Image Quilting for Texture Synthesis and Transfer, SIGGRAPH 2001

Matlab Toolkit for Distance Metric Learning Distance Metric Learning Code http://www.cs.cmu.edu/~liuy/distlearn.htm  

Nonparametric Scene Parsing via Label Transfer Image Understanding Code http://people.csail.mit.edu/celiu/LabelTransfer/index.html C. Liu, J. Yuen, and Antonio Torralba, Nonparametric Scene Parsing via Label Transfer, PAMI 2011

Geodesic Star Convexity for Interactive Image Segmentation Object Segmentation Code http://www.robots.ox.ac.uk/~vgg/software/iseg/index.shtml V. Gulshan, C. Rother, A. Criminisi, A. Blake and A. Zisserman. Geodesic star convexity for interactive image segmentation

Discriminative Models for Multi-Class Object Layout Image Understanding Code http://www.ics.uci.edu/~desaic/multiobject_context.zip C. Desai, D. Ramanan, C. Fowlkes. "Discriminative Models for Multi-Class Object Layout, IJCV 2011

Articulated Pose Estimation using Flexible Mixtures of Parts Pose Estimation Code http://phoenix.ics.uci.edu/software/pose/ Y. Yang, D. Ramanan, Articulated Pose Estimation using Flexible Mixtures of Parts, CVPR 2011

Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects Visual Tracking Code http://www.ics.uci.edu/~hpirsiav/papers/tracking_cvpr11_release_v1.0.tar.gz H. Pirsiavash, D. Ramanan, C. Fowlkes. "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, CVPR 2011

Training Deformable Models for Localization Pose Estimation Code http://www.ics.uci.edu/~dramanan/papers/parse/index.html Ramanan, D. "Learning to Parse Images of Articulated Bodies." NIPS 2006

Low-Rank Matrix Recovery and Completion Low-Rank Modeling Code http://perception.csl.uiuc.edu/matrix-rank/sample_code.html  

Spectral Hashing Nearest Neighbors Matching Code http://www.cs.huji.ac.il/~yweiss/SpectralHashing/ Y. Weiss, A. Torralba, R. Fergus, Spectral Hashing, NIPS 2008

What makes a good model of natural images ? Image Denoising Code http://www.cs.huji.ac.il/~yweiss/BRFOE.zip Y. Weiss and W. T. Freeman, CVPR 2007

Generalized Principal Component Analysis Subspace Learning Code http://www.vision.jhu.edu/downloads/main.php?dlID=c1 R. Vidal, Y. Ma and S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003

Online Discriminative Object Tracking with Local Sparse Representation Visual Tracking Code http://faculty.ucmerced.edu/mhyang/code/wacv12a_code.zip Q. Wang, F. Chen, W. Xu, and M.-H. Yang, Online Discriminative Object Tracking with Local Sparse Representation, WACV 2012

Superpixel Tracking Visual Tracking Code http://faculty.ucmerced.edu/mhyang/papers/iccv11a.html S. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel Tracking, ICCV 2011

Learning Hierarchical Image Representation with Sparsity, Saliency and Locality Saliency Detection Code   J. Yang and M.-H. Yang, Learning Hierarchical Image Representation with Sparsity, Saliency and Locality, BMVC 2011

Estimating Human Pose from Occluded Images Pose Estimation Code http://faculty.ucmerced.edu/mhyang/code/accv09_pose.zip J.-B. Huang and M.-H. Yang, Estimating Human Pose from Occluded Images, ACCV 2009

Visual Tracking with Histograms and Articulating Blocks Visual Tracking Code http://www.cise.ufl.edu/~smshahed/tracking.htm S. M. Shshed Nejhum, J. Ho, and M.-H.Yang, Visual Tracking with Histograms and Articulating Blocks, CVPR 2008

Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing Sparse Representation Code http://www.cs.technion.ac.il/~elad/Various/Matlab-Package-Book.rar M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing

Single-Image Super-Resolution Matlab Package Image Super-resolution Code http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip R. Zeyde, M. Elad, and M. Protter, On Single Image Scale-Up using Sparse-Representations, LNCS 2010

Robust Sparse Coding for Face Recognition Sparse Representation Code http://www4.comp.polyu.edu.hk/~cslzhang/code/RSC.zip M. Yang, L. Zhang, J. Yang and D. Zhang, “Robust Sparse Coding for Face Recognition,” CVPR 2011

Centralized Sparse Representation for Image Restoration Sparse Representation Code http://www4.comp.polyu.edu.hk/~cslzhang/code/CSR_IR.zip W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” ICCV 2011

A Linear Subspace Learning Approach via Sparse Coding Sparse Representation Code http://www4.comp.polyu.edu.hk/~cslzhang/code/LSL_SC.zip L. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” ICCV 2011

Fisher Discrimination Dictionary Learning for Sparse Representation Sparse Representation Code http://www4.comp.polyu.edu.hk/~cslzhang/code/FDDL.zip M. Yang, L. Zhang, X. Feng and D. Zhang, Fisher Discrimination Dictionary Learning for Sparse Representation, ICCV 2011

Hyper-graph Matching via Reweighted Random Walks Graph Matching Code http://cv.snu.ac.kr/research/~RRWHM/ J. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011

Reweighted Random Walks for Graph Matching Graph Matching Code http://cv.snu.ac.kr/research/~RRWM/ M. Cho, J. Lee, and K. M. Lee, Reweighted Random Walks for Graph Matching, ECCV 2010

Visual Tracking Decomposition Visual Tracking Code http://cv.snu.ac.kr/research/~vtd/ J Kwon and K. M. Lee, Visual Tracking Decomposition, CVPR 2010

SPArse Modeling Software Sparse Representation Code http://www.di.ens.fr/willow/SPAMS/ J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding, JMLR 2010

OpenSourcePhotogrammetry Structure from motion Code http://opensourcephotogrammetry.blogspot.com/  

Clustering Views for Multi-view Stereo Multi-View Stereo Code http://grail.cs.washington.edu/software/cmvs/ Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010

Patch-based Multi-view Stereo Software Multi-View Stereo Code http://grail.cs.washington.edu/software/pmvs/ Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, PAMI 2009

Towards Total Scene Understanding Image Understanding Code http://vision.stanford.edu/projects/totalscene/index.html L.-J. Li, R. Socher and Li F.-F.. Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework, CVPR 2009

Object Bank Image Understanding Code http://vision.stanford.edu/projects/objectbank/index.html Li-Jia Li, Hao Su, Eric P. Xing and Li Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification and Semantic Feature Sparsification, NIPS 2010

Coherency Sensitive Hashing Nearest Neighbors Matching Code http://www.eng.tau.ac.il/~simonk/CSH/index.html S. Korman, S. Avidan, Coherency Sensitive Hashing, ICCV 2011

RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition Low-Rank Modeling Code http://perception.csl.uiuc.edu/matrix-rank/rasl.html Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition, CVPR 2010

TILT: Transform Invariant Low-rank Textures Low-Rank Modeling Code http://perception.csl.uiuc.edu/matrix-rank/tilt.html Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, TILT: Transform Invariant Low-rank Textures, IJCV 2011

BRIEF: Binary Robust Independent Elementary Features Feature Extraction Code http://cvlab.epfl.ch/research/detect/brief/ M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010

Sketching the Common Common Visual Pattern Discovery Code http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010

Common Visual Pattern Discovery via Spatially Coherent Correspondences Common Visual Pattern Discovery Code https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0 H. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010

Richardson-Lucy Deblurring for Scenes under Projective Motion Path Image Deblurring Code http://yuwing.kaist.ac.kr/projects/projectivedeblur/projectivedeblur_files/ProjectiveDeblur.zip Y.-W. Tai, P. Tan, M. S. Brown: Richardson-Lucy Deblurring for Scenes under Projective Motion Path, PAMI 2011

sRD-SIFT Feature Extraction Code http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html# M. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010

Constant-Space Belief Propagation Stereo Code http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm Q. Yang, L. Wang, and N. Ahuja, A Constant-Space Belief Propagation Algorithm for Stereo Matching, CVPR 2010

Real-time Specular Highlight Removal Illumination, Reflectance, and Shadow Code http://www.cs.cityu.edu.hk/~qiyang/publications/code/eccv-10.zip Q. Yang, S. Wang and N. Ahuja, Real-time Specular Highlight Removal Using Bilateral Filtering, ECCV 2010

Saliency-based video segmentation Saliency Detection Code http://www.brl.ntt.co.jp/people/akisato/saliency3.html K. Fukuchi, K. Miyazato, A. Kimura, S. Takagi and J. Yamato, Saliency-based video segmentation with graph cuts and sequentially updated priors, ICME 2009

Neocognitron for handwritten digit recognition Text Recognition Code http://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=375 K. Fukushima: "Neocognitron for handwritten digit recognition", Neurocomputing, 2003

Non-blind deblurring (and blind denoising) with integrated noise estimation Image Deblurring Code http://www.gris.tu-darmstadt.de/research/visinf/software/index.en.htm U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation, CVPR 2011

LDAHash: Binary Descriptors for Matching in Large Image Databases Nearest Neighbors Matching Code http://cvlab.epfl.ch/research/detect/ldahash/index.php C. Strecha, A. M. Bronstein, M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller descriptors, PAMI, 2011. 

Sparse coding simulation software Sparse Representation Code http://redwood.berkeley.edu/bruno/sparsenet/ Olshausen BA, Field DJ, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images", Nature 1996

Efficient sparse coding algorithms Sparse Representation Code http://ai.stanford.edu/~hllee/softwares/nips06-sparsecoding.htm H. Lee, A. Battle, R. Rajat and A. Y. Ng, Efficient sparse coding algorithms, NIPS 2007

Spectrum Scale Space based Visual Saliency Saliency Detection Code http://www.cim.mcgill.ca/~lijian/saliency.htm J Li, M D. Levine, X An and H. He, Saliency Detection Based on Frequency and Spatial Domain Analyses, BMVC 2011

Tracking using Pixel-Wise Posteriors Visual Tracking Code http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml C. Bibby and I. Reid, Tracking using Pixel-Wise Posteriors, ECCV 2008

Game Theory in Computer Vision and Pattern Recognition Game Theory Tutorial http://www.dsi.unive.it/~atorsell/cvpr2011tutorial/ Marcello Pelillo and Andrea Torsello, CVPR 2011 Tutorial

Image and Video Description with Local Binary Pattern Variants Feature Extraction Tutorial http://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf M. Pietikainen and J. Heikkila, CVPR 2011 Tutorial

Tools and Methods for Image Registration Image Registration Tutorial http://www.imgfsr.com/CVPR2011/Tutorial6/ Brown, G. Carneiro, A. A. Farag, E. Hancock, A. A. Goshtasby (Organizer), J. Matas, J.M. Morel, N. S. Netanyahu, F. Sur, and G. Yu, CVPR 2011 Tutorial

Frontiers of Human Activity Analysis Action Recognition Tutorial http://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/ J. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorial

Diffusion Geometry Methods in Shape Analysis Shape Analysis, Diffusion Geometry Tutorial http://tosca.cs.technion.ac.il/book/course_eccv10.html A. Brontein and M. Bronstein, ECCV 2010 Tutorial

Structured Prediction and Learning in Computer Vision Structured Prediction Tutorial http://www.nowozin.net/sebastian/cvpr2011tutorial/ S. Nowozin and C. Lampert, CVPR 2011 Tutorial

Variational Methods in Computer Vision Variational Calculus Tutorial http://cvpr.cs.tum.edu/tutorials/eccv2010 D. Cremers, B. Goldlücke, T. Pock, ECCV 2010 Tutorial

Computer Vision and 3D Perception for Robotics 3D perception Tutorial http://www.willowgarage.com/workshops/2010/eccv Radu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige and Andrea Vedaldi, ECCV 2010 Tutorial

Computational Symmetry: Past, Current, Future Computational Symmetry Tutorial http://vision.cse.psu.edu/research/symmComp/index.shtml Yanxi Liu, ECCV 2010 Tutorial

Feature Learning for Image Classification Feature Learning, Image Classification Tutorial http://ufldl.stanford.edu/eccv10-tutorial/ Kai Yu and Andrew Ng, ECCV 2010 Tutorial

Statistical and Structural Recognition of Human Actions Action Recognition Tutorial https://sites.google.com/site/humanactionstutorialeccv10/ Ivan Laptev and Greg Mori, ECCV 2010 Tutorial

Distance Functions and Metric Learning Distance Metric Learning Tutorial http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/ M. Werman, O. Pele and B. Kulis, ECCV 2010 Tutorial

Nonrigid Structure from Motion Structure from motion Tutorial http://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html Y. Sheikh and Sohaib Khan, ECCV 2010 Tutorial

Looking at people: The past, the present and the future Action Recognition Tutorial http://www.cs.brown.edu/~ls/iccv2011tutorial.html L. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorial

3D point cloud processing: PCL (Point Cloud Library) 3D point cloud processing Tutorial http://www.pointclouds.org/media/iccv2011.html R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorial

Fcam: an architecture and API for computational cameras Computational Imaging Tutorial http://fcam.garage.maemo.org/iccv2011.html Kari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorial

Variational methods for computer vision Variational Calculus Tutorial http://cvpr.in.tum.de/tutorials/iccv2011 Daniel Cremers, Bastian Goldlucke, Thomas Pock, ICCV 2011 Tutorial

Non-rigid registration and reconstruction Non-rigid registration Tutorial http://www.isr.ist.utl.pt/~adb/tutorial/ Alessio Del Bue, Lourdes Agapito, Adrien Bartoli, ICCV 2011 Tutorial

Learning with inference for discrete graphical models Graphical Models Tutorial http://www.csd.uoc.gr/~komod/ICCV2011_tutorial/ Nikos Komodakis, Pawan Kumar, Nikos Paragios, Ramin Zabih, ICCV 2011 Tutorial

Computer vision fundamentals: robust non-linear least-squares and their applications Non-linear Least Squares Tutorial http://cvlab.epfl.ch/~fua/courses/lsq/ Pascal Fua, Vincent Lepetit, ICCV 2011 Tutorial

Geometry constrained parts based detection Object Detection Tutorial http://ci2cv.net/tutorials/iccv-2011/ Simon Lucey, Jason Saragih, ICCV 2011 Tutorial

Decision forests for classification, regression, clustering and density estimation Decision Forests Tutorial http://research.microsoft.com/en-us/groups/vision/decisionforests.aspx A. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorial

Color image understanding: from acquisition to high-level image understanding Color Image Processing Tutorial http://www.cat.uab.cat/~joost/tutorial_iccv.html Theo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorial

Advances in Computer Vision Computer Vision Course http://groups.csail.mit.edu/vision/courses/6.869/ Antonio Torralba, MIT, Spring 2010

Introduction to Computer Vision Computer Vision Course http://www.cs.brown.edu/courses/cs143/ James Hays, Brown University, Fall 2011

The Computer Vision Industry Computer Vision Industry Link http://www.cs.ubc.ca/~lowe/vision.html David Lowe

Computer Vision, New York University, Fall 2012 Computer Vision Course http://cs.nyu.edu/~fergus/teaching/vision_2012/index.html Rob Fergus

Visual Recognition, University of Texas at Austin, Fall 2011 Visual Recognition Course http://www.cs.utexas.edu/~grauman/courses/fall2011/schedule.html Kristen Grauman

Computer Vision, University of Texas at Austin, Spring 2011 Computer Vision Course http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html Kristen Grauman

Learning-Based Methods in Vision, CMU, Spring 2012 Computer Vision Course https://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0 Alexei “Alyosha” Efros and Leonid Sigal

Computational Photography, CMU, Fall 2011 Computational Photography Course http://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html Alexei “Alyosha” Efros

Computer Vision, University of North Carolina at Chapel Hill, Spring 2010 Computer Vision Course http://www.cs.unc.edu/~lazebnik/spring10/ Svetlana Lazebnik

Matlab Tutorial Matlab Tutorial http://www.cs.unc.edu/~lazebnik/spring10/matlab.intro.html David Kriegman and Serge Belongie

Computer Vision: The Fundamentals, University of California at Berkeley, Fall 2012 Computer Vision Course https://www.coursera.org/course/vision Jitendra Malik

Computer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012 Computer Vision Course https://www.coursera.org/course/computervision Silvio Savarese and Fei-Fei Li

Introduction to Computer Vision, Stanford University, Winter 2010-2011 Computer Vision Course http://vision.stanford.edu/teaching/cs223b/ Fei-Fei Li

Computer Vision, University of Washington, Winter 2012 Computer Vision Course http://www.cs.washington.edu/education/courses/cse455/12wi/ Steven Seitz

The Computer Vision homepage Computer Vision Link http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html  

CVonline Computer Vision Link http://homepages.inf.ed.ac.uk/rbf/CVonline/ CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

Annotated Computer Vision Bibliography Computer Vision Link http://iris.usc.edu/Vision-Notes/bibliography/contents.html compiled by Keith Price

Computer Vision, University of Illinois, Urbana-Champaign, Spring 2012 Computer Vision Course http://www.cs.illinois.edu/class/sp12/cs543/ Derek Hoiem

Computational Photography, University of Illinois, Urbana-Champaign, Fall 2011 Computational Photography Course http://www.cs.illinois.edu/class/fa11/cs498dh/ Derek Hoiem

3D Computer Vision: Past, Present, and Future 3D Computer Vision Talk http://www.youtube.com/watch?v=kyIzMr917Rc Steven Seitz, University of Washington, Google Tech Talk, 2011

Theory and Applications of Boosting Boosting Talk http://videolectures.net/mlss09us_schapire_tab/ Robert Schapire, Department of Computer Science, Princeton University

Learning in Hierarchical Architectures: from Neuroscience to Derived Kernels Neuroscience Talk http://videolectures.net/mlss09us_poggio_lhandk/ Tomaso A. Poggio, McGovern Institute for Brain Research, Massachusetts Institute of Technology

Optimization Algorithms in Support Vector Machines Optimization and Support Vector Machines Talk http://videolectures.net/mlss09us_wright_oasvm/ Stephen J. Wright, Computer Sciences Department, University of Wisconsin - Madison

Convex Optimization Optimization Talk http://videolectures.net/mlss2011_vandenberghe_convex/ Lieven Vandenberghe, Electrical Engineering Department, University of California, Los Angeles

Optimization Algorithms in Machine Learning Optimization Talk http://videolectures.net/nips2010_wright_oaml/ Stephen J. Wright, Computer Sciences Department, University of Wisconsin - Madison

Introduction To Bayesian Inference Bayesian Inference Talk http://videolectures.net/mlss09uk_bishop_ibi/ Christopher Bishop, Microsoft Research

Information Theory Information Theory Talk http://videolectures.net/mlss09uk_mackay_it/ David MacKay, University of Cambridge

Gaussian Process Basics Gaussian Process Talk http://videolectures.net/gpip06_mackay_gpb/ David MacKay, University of Cambridge

Statistical Learning Theory Statistical Learning Theory Talk http://videolectures.net/mlss04_taylor_slt/ John Shawe-Taylor, Centre for Computational Statistics and Machine Learning, University College London

Learning and Inference in Low-Level Vision Low-level vision Talk http://videolectures.net/nips09_weiss_lil/ Yair Weiss, School of Computer Science and Engineering, The Hebrew University of Jerusalem

Energy Minimization with Label costs and Applications in Multi-Model Fitting Optimization Talk http://videolectures.net/nipsworkshops2010_boykov_eml/ Yuri Boykov, Department of Computer Science, University of Western Ontario

Graphical Models and message-passing algorithms Graphical Models Talk http://videolectures.net/mlss2011_wainwright_messagepassing/ Martin J. Wainwright, University of California at Berkeley

Who is Afraid of Non-Convex Loss Functions? Optimization Talk http://videolectures.net/eml07_lecun_wia/ Yann LeCun, New York University

A tutorial on Deep Learning Deep Learning Talk http://videolectures.net/jul09_hinton_deeplearn/ Geoffrey E. Hinton, Department of Computer Science, University of Toronto

Relative Entropy Relative Entropy Talk http://videolectures.net/nips09_verdu_re/ Sergio Verdu, Princeton University

Sparse Methods for Machine Learning: Theory and Algorithms Sparse Representation Talk http://videolectures.net/nips09_bach_smm/ Francis R. Bach, INRIA

Information Theory in Learning and Control Information Theory Talk http://www.youtube.com/watch?v=GKm53xGbAOk&feature=relmfu Naftali (Tali) Tishby, The Hebrew University

Modern Bayesian Nonparametrics Bayesian Nonparametrics Talk http://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu Peter Orbanz and Yee Whye Teh

Understanding Visual Scenes Visual Recognition Talk http://videolectures.net/nips09_torralba_uvs/ Antonio Torralba, MIT

Machine learning and kernel methods for computer vision Kernels and Distances Talk http://videolectures.net/etvc08_bach_mlakm/ Francis R. Bach, INRIA

Graphical Models, Exponential Families, and Variational Inference Graphical Models Tutorial http://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf Martin J. Wainwright and Michael I. Jordan, University of California at Berkeley

A Gentle Tutorial of the EM Algorithm
and its Application to Parameter
Estimation for Gaussian Mixture and
Hidden Markov Models
Expectation Maximization Tutorial http://crow.ee.washington.edu/people/bulyko/papers/em.pdf Jeff A. Bilmes, University of California at Berkeley

A Tutorial on Spectral Clustering Spectral Clustering Tutorial http://web.mit.edu/~wingated/www/introductions/tutorial_on_spectral_clustering.pdf Ulrike von Luxburg, Max Planck Institute for Biological Cybernetics

Object Recognition with Deformable Models Object Detection Talk http://www.youtube.com/watch?v=_J_clwqQ4gI Pedro Felzenszwalb, Brown University

Inference in Graphical Models, Stanford University, Spring 2012 Graphical Models Course http://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html Andrea Montanari, Stanford University

Writing Fast MATLAB Code Matlab Tutorial http://www.mathworks.com/matlabcentral/fileexchange/5685 Pascal Getreuer, Yale University

Source Code Collection for Reproducible Research Source code Link http://www.csee.wvu.edu/~xinl/reproducible_research.html collected by Xin Li, Lane Dept of CSEE, West Virginia University

Computer Vision Algorithm Implementations Source code Link http://www.cvpapers.com/rr.html CVPapers

CV Papers on the web Computer Vision Link http://www.cvpapers.com/index.html CVPapers

CV Datasets on the web Computer Vision Link http://www.cvpapers.com/datasets.html CVPapers

Computer Image Analysis, Computer Vision Conferences Computer Vision Link http://iris.usc.edu/information/Iris-Conferences.html USC

Compiled list of recognition datasets Dataset Link http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm compiled by Kristen Grauman

Detecting faces in images: A survey Face Detection Survey http://faculty.ucmerced.edu/mhyang/facedetection.html MH Yang, DJ Kriegman, N Ahuja, PAMI 2002

Face recognition: A literature survey Face Recognition Survey http://www.cs.ucf.edu/~dcm/Teaching/COT4810-Spring2011/Literature/DiegoVelasquez-FaceRecognitionLiteratureSurvey.pdf W. Zhao , R. Chellappa, P. J. Phillips, A. Rosenfeld, ACM Computing Surveys, 2003

Data clustering: a review Clustering Survey http://nd.edu/~flynn/papers/Jain-CSUR99.pdf Anil K Jain, M Narasimha Murty, Patrick J Flynn, ACM Computing Surveys, 1999

Statistical pattern recognition: A review Statistical Pattern Recognition Survey http://homepage.tudelft.nl/a9p19/papers/pami_00_review.pdf Anil K. Jain, Robert P. W. Duin, Jianchang Mao, PAMI 2000

Face detection in color images Face Detection Survey http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1000242&tag=1 Rein-Lien Hsu, Mohamed Abdel-Mottaleb, Anil K. Jain, PAMI 2002

An Introduction to Biometric Recognition Biometric Recognition Survey http://www.csee.wvu.edu/~ross/pubs/RossBioIntro_CSVT2004.pdf Anil K. Jain, Arun Ross, Salil Prabhakar, CSVT 2004

Image registration methods: a survey Image Registration Survey http://library.utia.cas.cz/prace/20030125.pdf Barbara Zitova, Jan Flusser, Image and Vision Computing, 2003

Image alignment and stitching: a tutorial Image Registration, Image Stitching Tutorial http://www.cs.washington.edu/education/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf Richard Szeliski, Foundations and Trends® in Computer Graphics and Vision, 2006

A Survey of Computer Vision-Based Human Motion Capture Motion Capture Survey http://cronos.rutgers.edu/~meer/TEACHTOO/PAPERS/moeslund06.pdf Thomas B. Moeslund, Adrian Hilton, Volker Kruger, CVIU, 2006

Detecting moving shadows: Algorithms and evaluation Illumination, Reflectance, and Shadow Survey http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01206520 A Prati, I Mikic, MM Trivedi, R. Cucchiara, PAMI 2003

Discrete-continuous optimization for large-scale structure from motion Structure from motion Code http://vision.soic.indiana.edu/wp/wp-content/uploads/disco-bp.zip David Crandall, Andrew Owens, Noah Snavely, Dan Huttenlocher, Discrete-Continuous Optimization for Large-scale Structure from Motion, CVPR 2011

Learning hierarchical spatio-temporal features for action recognition
with independent subspace analysis
Action Recognition Code http://ai.stanford.edu/~wzou/release.tar.gz Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng. "Learning hierarchical spatio-temporal features for action recognition
with independent subspace analysis", CVPR 2011

Non-linear least squares solver Optimization Code http://code.google.com/p/ceres-solver/ http://google-opensource.blogspot.com/2012/05/introducing-ceres-solver-nonlinear.html

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

Other useful links (dataset, lectures, and other softwares)

Conference Information

  • Computer Image Analysis, Computer Vision Conferences

Papers

  • Computer vision paper on the web

  • NIPS Proceedings

Datasets

  • Compiled list of recognition datasets

  • The PASCAL Visual Object Classes

  • Computer vision dataset from CMU

Lectures

  • Videolectures

Source Codes

  • Computer Vision Algorithm Implementations

  • OpenCV

  • Source Code Collection for Reproducible Research

Patents
  • United States Patent & Trademark Office

Source Codes

  • Computer Vision Algorithm Implementations

  • OpenCV

  • Source Code Collection for Reproducible Research


你可能感兴趣的:(PKU,Research)