python换脸开源_Python换脸

#!/usr/bin/python

# Copyright (c) 2015 Matthew Earl

#

# Permission is hereby granted, free of charge, to any person obtaining a copy

# of this software and associated documentation files (the "Software"), to deal

# in the Software without restriction, including without limitation the rights

# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

# copies of the Software, and to permit persons to whom the Software is

# furnished to do so, subject to the following conditions:

#

# The above copyright notice and this permission notice shall be included

# in all copies or substantial portions of the Software.

#

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN

# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE

# USE OR OTHER DEALINGS IN THE SOFTWARE.

"""

This is the code behind the Switching Eds blog post:

http://matthewearl.github.io/2015/07/28/switching-eds-with-python/

See the above for an explanation of the code below.

To run the script you'll need to install dlib (http://dlib.net) including its

Python bindings, and OpenCV. You'll also need to obtain the trained model from

sourceforge:

http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2

Unzip with `bunzip2` and change `PREDICTOR_PATH` to refer to this file. The

script is run like so:

./faceswap.py

If successful, a file `output.jpg` will be produced with the facial features

from `

` replaced with the facial features from ``.

"""

import cv2

import dlib

import numpy

import sys

PREDICTOR_PATH = "C:/Sde/dlib-18.16/shape_predictor_68_face_landmarks.dat"

SCALE_FACTOR = 1

FEATHER_AMOUNT = 11

FACE_POINTS = list(range(17, 68))

MOUTH_POINTS = list(range(48, 61))

RIGHT_BROW_POINTS = list(range(17, 22))

LEFT_BROW_POINTS = list(range(22, 27))

RIGHT_EYE_POINTS = list(range(36, 42))

LEFT_EYE_POINTS = list(range(42, 48))

NOSE_POINTS = list(range(27, 35))

JAW_POINTS = list(range(0, 17))

# Points used to line up the images.

ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +

RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)

# Points from the second image to overlay on the first. The convex hull of each

# element will be overlaid.

OVERLAY_POINTS = [

LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,

NOSE_POINTS + MOUTH_POINTS,

]

# Amount of blur to use during colour correction, as a fraction of the

# pupillary distance.

COLOUR_CORRECT_BLUR_FRAC = 0.6

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(PREDICTOR_PATH)

class TooManyFaces(Exception):

pass

class NoFaces(Exception):

pass

def get_landmarks(im):

rects = detector(im, 1)

if len(rects) > 1:

raise TooManyFaces

if len(rects) == 0:

raise NoFaces

return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])

def annotate_landmarks(im, landmarks):

im = im.copy()

for idx, point in enumerate(landmarks):

pos = (point[0, 0], point[0, 1])

cv2.putText(im, str(idx), pos,

fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,

fontScale=0.4,

color=(0, 0, 255))

cv2.circle(im, pos, 3, color=(0, 255, 255))

return im

def draw_convex_hull(im, points, color):

points = cv2.convexHull(points)

cv2.fillConvexPoly(im, points, color=color)

def get_face_mask(im, landmarks):

im = numpy.zeros(im.shape[:2], dtype=numpy.float64)

for group in OVERLAY_POINTS:

draw_convex_hull(im,

landmarks[group],

color=1)

im = numpy.array([im, im, im]).transpose((1, 2, 0))

im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0

im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)

return im

def transformation_from_points(points1, points2):

"""

Return an affine transformation [s * R | T] such that:

sum ||s*R*p1,i + T - p2,i||^2

is minimized.

"""

# Solve the procrustes problem by subtracting centroids, scaling by the

# standard deviation, and then using the SVD to calculate the rotation. See

# the following for more details:

# https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

points1 = points1.astype(numpy.float64)

points2 = points2.astype(numpy.float64)

c1 = numpy.mean(points1, axis=0)

c2 = numpy.mean(points2, axis=0)

points1 -= c1

points2 -= c2

s1 = numpy.std(points1)

s2 = numpy.std(points2)

points1 /= s1

points2 /= s2

U, S, Vt = numpy.linalg.svd(points1.T * points2)

# The R we seek is in fact the transpose of the one given by U * Vt. This

# is because the above formulation assumes the matrix goes on the right

# (with row vectors) where as our solution requires the matrix to be on the

# left (with column vectors).

R = (U * Vt).T

return numpy.vstack([numpy.hstack(((s2 / s1) * R,

c2.T - (s2 / s1) * R * c1.T)),

numpy.matrix([0., 0., 1.])])

def read_im_and_landmarks(fname):

im = cv2.imread(fname, cv2.IMREAD_COLOR)

im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR,

im.shape[0] * SCALE_FACTOR))

s = get_landmarks(im)

return im, s

def warp_im(im, M, dshape):

output_im = numpy.zeros(dshape, dtype=im.dtype)

cv2.warpAffine(im,

M[:2],

(dshape[1], dshape[0]),

dst=output_im,

borderMode=cv2.BORDER_TRANSPARENT,

flags=cv2.WARP_INVERSE_MAP)

return output_im

def correct_colours(im1, im2, landmarks1):

blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(

numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -

numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))

blur_amount = int(blur_amount)

if blur_amount % 2 == 0:

blur_amount += 1

im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)

im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)

# Avoid divide-by-zero errors.

im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)

return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /

im2_blur.astype(numpy.float64))

#参数1背景图,参数2为人脸图

im1, landmarks1 = read_im_and_landmarks(sys.argv[1])

im2, landmarks2 = read_im_and_landmarks(sys.argv[2])

# im1, landmarks1 = read_im_and_landmarks("0.jpg")

# im2, landmarks2 = read_im_and_landmarks("1.jpg")

M = transformation_from_points(landmarks1[ALIGN_POINTS],

landmarks2[ALIGN_POINTS])

mask = get_face_mask(im2, landmarks2)

warped_mask = warp_im(mask, M, im1.shape)

combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],

axis=0)

warped_im2 = warp_im(im2, M, im1.shape)

warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1)

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

cv2.imwrite('output.jpg', output_im)

你可能感兴趣的:(python换脸开源)