蓝桥杯31天冲刺打卡题解(Day11)

Day11

第一题

第十一届2020年蓝桥杯国赛

天干地支

JavaC组第6题

模拟

一道很复杂,但又不完全复杂的模拟题。

我们可以写一堆if/else用循环来判断,但我们其实可以找到其中的规律:在2020年时,是庚子年,我们判断一下0000年是什么年,我们可以发现天干是以10为单位的,利用2020 % 10 = 0发现0000年的天干也是庚,地支是以12为单位的,计算2020 % 12 = 4,所以地支要往前推4年,地支为申,即0000年为庚申年,那么根据模拟法可知:

year % 10 = 0 时,天干为庚

year % 10 = 1 时,天干为庚的下一个 辛

以此类推…

year % 10 = 0 时,地支为申

year % 10 = 1 时,地支为申的下一个 酉

所以我们可以来两个数组存储天干和地支,从0000年开始存储,这样就可以根据%的余数来判断当前的年份了。

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
    	Scanner sc = new Scanner(System.in);
    	int year = sc.nextInt();
    	String[] tg = {"geng", "xin", "ren", "gui", "jia", "yi" , "bing", "ding", "wu", "ji"};
    	String[] dz = {"shen", "you", "xu", "hai", "zi", "chou", "yin", "mao", "chen", "si", "wu", "wei"};

    	System.out.println(tg[year % 10] + dz[year % 12]);
    }
}

第二题

第八届2017年蓝桥杯省赛

包子凑数

JavaB组第8题

完全背包问题

假设我们有 N N N 个蒸笼,每个蒸笼的包子分别为 A 1 , A 2 . . . A n A_1,A_2...A_n A1,A2...An,且他们的最大公约数是 d d d,且 d > 1 d>1 d>1,所有数都是 d d d 的倍数,如果一个数不能被 d d d 整数,则说明这个数也一定不能被 A 1 , A 2 . . . A n A_1,A_2...A_n A1,A2...An 凑出来,所以此时会有正无穷 I N F INF INF 个数凑不出来。

g c d ( A 1 , A 2 . . . A n ) = 1 gcd(A_1,A_2...A_n)=1 gcd(A1,A2...An)=1 时,不能凑出来的数一定是有限个,这是依据裴蜀定理,裴蜀定理是基于两个数 a , b a,b a,b 的定理,当 g c d ( a , b ) = 1 gcd(a,b) = 1 gcd(a,b)=1 时,最大不能表示的数是: ( a − 1 ) ( b − 1 ) − 1 (a-1)(b-1)-1 (a1)(b1)1, 当有 N N N 个数时定理也同样适用,当数变多时,这个上界必然会更小,因为可选的数变多了,因为 1 ≤ N ≤ 100 1\leq N \leq 100 1N100,小于 100 100 100 中最大互质的两个数是 98 , 99 98,99 98,99,所以这里的上界我们取到 10000 10000 10000 即可。

此时这个问题就变成了完全背包问题,在 10000 10000 10000 以内有多少个数不能被组合出来。

闫式DP分析法

蓝桥杯31天冲刺打卡题解(Day11)_第1张图片

此时的状态转移方程: f ( i , j ) = f ( i − 1 , j ) ∣ f ( i − 1 , j − A ) ∣ f ( i − 1 , j − 2 A ) ∣ . . . ∣ f ( i − 1 , j ≤ 0 ) f(i,j)=f(i-1,j)|f(i-1,j-A)|f(i-1,j-2A)|...|f(i-1,j\leq0) f(i,j)=f(i1,j)f(i1,jA)f(i1,j2A)...f(i1,j0)

时间复杂度为 O ( N 3 ) O(N^3) O(N3),状态的数量是 N 2 N^2 N2 个,转移的数量是 N N N 个,显然是需要优化一下的,一般的背包问题时间复杂度是 O ( N 2 ) O(N^2) O(N2)

我们做一下 j j j 的变量变换: f ( i , j − A ) = f ( i − 1 , j − A ) ∣ f ( i − 1 , j − 2 A ) ∣ f ( i − 1 , j − 3 A ) ∣ . . . f(i,j-A)=f(i-1,j-A)|f(i-1,j-2A)|f(i-1,j-3A)|... f(i,jA)=f(i1,jA)f(i1,j2A)f(i1,j3A)...

此时这个等式可以替换为第一个等式从第二项开始后面的所有项:

蓝桥杯31天冲刺打卡题解(Day11)_第2张图片

状态转移方程优化为: f ( i , j ) = f ( i − 1 , j ) ∣ f ( i , j − A ) f(i,j)=f(i-1,j)|f(i,j-A) f(i,j)=f(i1,j)f(i,jA)

import java.util.Scanner;

public class Main {
    
    static final int N = 110, M = 10010;
    static int[] a = new int[N];
    static boolean[][] f = new boolean[N][M];
    
    public static void main(String[] args) {
    	Scanner sc = new Scanner(System.in);
    	int n = sc.nextInt();
    	int d = 0;
    	for (int i = 1; i <= n; i++) {
    	    a[i] = sc.nextInt();
    	    d = gcd(d, a[i]);
    	}

        if (d != 1) System.out.println("INF"); // 最大公约数不为1 有无限多个数凑不出来
        else {
            f[0][0] = true; // 0件物品 体积为0时也是一种方案
            for (int i = 1; i <= n; i++) {
                for (int j = 0; j < M; j++) {
                    f[i][j] = f[i - 1][j]; // 第一项一定存在
                    if (j >= a[i]) f[i][j] |= f[i][j - a[i]]; // 第二项不一定存在 用或"|"
                }
            }
            
            int res = 0;
            for (int i = 0; i < M; i++) {
                if (!f[n][i]) res++;
            }

    	    System.out.println(res);
        }
    }
    
    private static int gcd(int a, int b) {
        return b != 0 ? gcd(b, a % b) : a;
    }
}

我们发现我们的方程第 i i i 维只依赖于第 i i i i − 1 i-1 i1 项,所以我们可以将数组优化成一维:

import java.util.Scanner;

public class Main {
    
    static final int N = 110, M = 10010;
    static int[] a = new int[N];
    static boolean[] f = new boolean[M];
    
    public static void main(String[] args) {
    	Scanner sc = new Scanner(System.in);
    	int n = sc.nextInt();
    	int d = 0;
    	for (int i = 1; i <= n; i++) {
    	    a[i] = sc.nextInt();
    	    d = gcd(d, a[i]);
    	}

        if (d != 1) System.out.println("INF"); // 最大公约数不为1 有无限多个数凑不出来
        else {
            f[0] = true; // 0件物品 体积为0时也是一种方案
            for (int i = 1; i <= n; i++) {
                for (int j = a[i]; j < M; j++) {
                    f[j] |= f[j - a[i]];
                }
            }
            
            int res = 0;
            for (int i = 0; i < M; i++) {
                if (!f[i]) res++;
            }

    	    System.out.println(res);
        }
    }
    
    private static int gcd(int a, int b) {
        return b != 0 ? gcd(b, a % b) : a;
    }
}

第三题

第十届2019年蓝桥杯国赛

求值

C++B组第4题

填空题

目的是找到一个最小数,且它的约数个数是100。

简单的暴力打表题,我们在编译器上跑,在oj上提交结果的代码即可。

public class Main {
	public static void main(String[] args) {
		for(int i = 1; ; i++) {
			if(cnt(i) == 100) { // 有100个约数的最小数
				System.out.println(i);
				break;
			}
		}
	}
	
	// 求约数
	private static int cnt(int a){
		int ans = 0;
		for (int i = 1; i <= a; i++)
			if (a % i == 0) ans++;		
		return ans;
	}
}

提交代码:

public class Main {
	public static void main(String[] args) {
		System.out.println(45360);
	}
}

第四题

第八届2017年蓝桥杯省赛

青蛙跳杯子

JavaC组第9题

bfs

import java.util.HashMap;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

public class Main {

    static int l;
    static int[] dx = {1, -1, 2, -2, 3, -3};
    static String a = "";
    static String b = "";

    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        a = in.next();
        b = in.next();
        l = a.length();
        System.out.println(bfs());
    }

    private static int bfs() {
        Queue q = new LinkedList<>();
        q.offer(a);
        HashMap dist = new HashMap<>();
        dist.put(a, 0);
        while (!q.isEmpty()) {
            StringBuffer t = new StringBuffer(q.poll());

            int dis = dist.get(t.toString());
            if (t.toString().equals(b)) {
                return dis;
            }

            int pos = t.indexOf("*");
            for (int i = 0; i < 6; i ++) {
                int nx = pos + dx[i];
                if (nx >= 0 && nx < l) {
                    char x = t.toString().charAt(pos);
                    char y = t.toString().charAt(nx);
                    t.setCharAt(pos, y);
                    t.setCharAt(nx, x);
                    if (!dist.containsKey(t.toString())) {
                        dist.put(t.toString(), dis + 1);
                        q.offer(t.toString());
                    }
                    x = t.toString().charAt(pos);
                    y = t.toString().charAt(nx);
                    t.setCharAt(pos, y);
                    t.setCharAt(nx, x);
                }
            }
        }
        return -1;
    }
}

你可能感兴趣的:(#,刷题笔记,蓝桥杯,java,算法,动态规划,bfs)