imx219-83 ros使用

1. jetson_nano_csi_cam_ros中译

Jetson Nano DevKit B01 + 双 CSI 摄像头 ROS 驱动程序。

1.1安装方法

系统:L4T R32.4.2 + ROS Melodic

  1. 下载此此存储库

    cd ~/catkin_ws/src
    git clone https://github.com/rt-net/jetson_nano_csi_cam_ros.git 
    
  2. gscam和对应的GStreamer-1.0支持包下载

    sudo apt-get install gstreamer1.0-tools libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libgstreamer-plugins-good1.0-dev
    
    cd ~/catkin_ws/src
    git clone https://github.com/ros-drivers/gscam.git
    

    下载后,编辑./gscam/Makefile,添加-DGSTREAMER_VERSION_1_x=On

    EXTRA_CMAKE_FLAGS = -DUSE_ROSBUILD:BOOL=1 -DGSTREAMER_VERSION_1_x=On
    
  3. 构建jetson_nano_csi_camgscam

    cd ~/catkin_ws
    catkin build
    source devel/setup.bash
    

1.2 使用方法

1.2.1 快速开始

要将CAM0连接的相机流数据在ROS主题/csi_cam_0/image_raw下分发,在终端执行以下命令:

roslaunch jetson_nano_csi_cam jetson_csi_cam.launch sensor_id:=0 width:=<image width> height:=<image height> fps:=<desired framerate>

要将连接到CAM0和CAM1的相机流数据在ROS主题/csi_cam_0/image_raw/csi_cam_1/image_raw下同时分发,在终端执行以下命令:

roslaunch jetson_nano_csi_cam jetson_dual_csi_cam.launch width:=<image width> height:=<image height> fps:=<desired framerate>

1.2.2 视频采集/分发

视频分发

执行以下命令以将相机图像作为 ROS 主题传送。

roslaunch jetson_csi_cam jetson_csi_cam.launch

这次发布只是启动了一个用于分发的节点。还可以为视频分发添加一个选项:

roslaunch jetson_csi_cam jetson_csi_cam.launch width:=1920 height:=1080 fps:=15

对于其它参数,可以在使用roslaunch时以:=格式指定选项。

jetson_csi_cam.launch的其它参数

  • sensor_id (default: 0) – Camera ID
  • width (default: 640) – 要传送的视频的宽度
  • height (default: 480) – 要传送的视频的高度
  • fps (default: 30) – 传送的帧率(根据分辨率可能低于这个帧率)
  • cam_name (default: csi_cam_$(arg sensor_id)) – camera info对应的相机名称
  • frame_id (default: /$(arg cam_name)_link) – 用于tf的相机帧名
  • sync_sink (default: true) – appsink的同步设置
    (如果你设置了低帧率并且有问题,将此选项设置为 false 可能会解决问题。)
  • flip_method (default: 0) – 传送视频时的图像翻转选项

1.2.3 视频分发测试

检查相机图像

为了方便查看摄像头图像,请在桌面环境(例如 GNOME)中启动终端并执行 rqt_img_view

rosrun rqt_iamge_view rqt_iamge_view

从启动的图像查看器左上角的下拉菜单中选择相机图像主题。 jetson_csi_cam.launch 的默认设置是/csi_cam_0/image_raw
imx219-83 ros使用_第1张图片

帧率测量

您可以使用以下命令检查 ROS 主题的更新频率:

rostopic hz /csi_cam_0/image_raw

相机图像ROS主题更新频率不是指定的图像帧率,但几乎匹配。 如果低于设置的帧率,可能是以下原因。

  • Jetson Nano 电源管理处于性能限制模式
  • Jetson Nano 与电脑接收视频网络不稳定
  • 您指定的值大于或等于所连接摄像头模块的最大帧速率。

1.2.4 相机校准

jetson_nano_csi_cam还将相机信息作为 ROS 主题分发,以便更轻松地校准相机。
要将相机信息与您实际使用的相机相匹配,请根据 ROS Wiki 上的单目相机校准指南/双目相机校准指南进行校准。但无需校准即可分发相机图像。 若需进行校准,请参阅以下信息:

  • 您需要按照 ROS Wiki 上的说明打印棋盘格。
  • 使用视频分发中解释的 roslaunch 命令分发相机图像。
  • 指定图像和相机选项以及棋盘的大小,如下面的命令所示,并进行校准。
    #单目
    rosrun camera_calibration cameracalibrator.py --size 8x6 --square <square size in meters> image:=/csi_cam_0/image_raw camera:=/csi_cam_0
    #双目
    rosrun camera_calibration cameracalibrator.py --approximate 0.1 --size 8x6 --square 0.027 --no-service-check right:=/csi_cam_1/image_raw left:=/csi_cam_0/image_raw right_camera:=/csi_cam_1 left_camera:=/csi_cam_0
    

如果在相机可以看到的范围内将棋盘移动到一定程度,您将可以按下“校准”按钮,从而得到校准文件。
imx219-83 ros使用_第2张图片

2. IMU的使用

2.1 相机+IMU ROS包

2.2 ICM20948介绍

10 DOF IMU Sensor (D)
IMU —— Mahony滤波算法原理及实现源码

  • 使用demo发现fps只有25hz,查看源码发现是磁力计读取占用了较多时间,而源码计算四元数时又使用了磁力计数据以确定方位。第三讲 AHRS姿态解算
  • 关于标定文件的使用可用函数:ICM20948_Calibration()
    ICM20948通过软I2C IIC的读取三轴原始数据方法(含源代码)
    ICM-20948 9-Axis Sensor Part I
  • 驱动
    原来的demo磁力计读取速度慢,要换个驱动改ros版本,以下备用
    Qwiic_9DoF_IMU_ICM20948_Py
    SparkFun Qwiic 9DoF IMU Breakout
    Playground for experimenting with ICM20948
    ICM20948 9-DOF Accelerometer, Magnetometer and Gyroscope
    C Driver for the ICM-20948 9-Axis Telemetry sensor

2.3 IMU 标定

VIO 中 IMU 的标定流程 (3/3) - imu_tk 使用备忘
总结:单独标定IMU的工具包(kalibr_allan,imu_tk,imu_utils)
IMU-TK: Inertial Measurement Unit ToolKit

#launch
>
    >
        >
    >
    -d $(find little_stereo_camera)/rviz/stereo_pcl.rviz" />
     -0.5 0.5 -0.5 map stereo_image 100" output = "screen"/>
    >
        >
            <!-- > -->
            
            
            
        >
    >
>
#! /usr/bin/env python

import numpy as np 
import cv2
import os
import rospy
import shlex
import subprocess
import yaml
from std_msgs.msg import String 
from std_msgs.msg import Header
from sensor_msgs.msg import Image
from sensor_msgs.msg import CameraInfo
from cv_bridge import CvBridge, CvBridgeError
import thread
# from pub_info import *
class LittleStereoCam():
    def __init__(self):
        rospy.init_node("little_stereo_camera", anonymous = True)
        self.bridge = CvBridge() 

        self.left_image_pub = rospy.Publisher("stereo/left/image_raw", Image, queue_size=1)
        self.left_image_info_pub = rospy.Publisher("stereo/left/camera_info", CameraInfo, queue_size=1)
        self.right_image_pub = rospy.Publisher("stereo/right/image_raw", Image, queue_size=1)
        self.right_image_info_pub = rospy.Publisher("stereo/right/camera_info", CameraInfo, queue_size=1)

        self.camera_info = CameraInfo()
        self.msg_header = Header()
        self.ros_image = Image()
        self.ros_image.height = 240
        self.ros_image.width = 320
        
        cam_id= rospy.get_param("cam_id", 0)
        dir_path = os.path.dirname(os.path.realpath(__file__))
        self.left_yaml_file = dir_path+"/../calibration/left.yaml"
        self.right_yaml_file = dir_path+"/../calibration/right.yaml"
        self.cam=cv2.VideoCapture(cam_id)
        cam_mode_dict={
            'LEFT_EYE_MODE':1,
            'RIGHT_EYE_MODE':2,
            'RED_BLUE_MODE':3,
            'BINOCULAR_MODE':4,
            }
        cam_mode=cam_mode_dict['BINOCULAR_MODE']
        command_list=[
        "uvcdynctrl -d /dev/video{cam_id} -S 6:8 '(LE)0x50ff'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:15 '(LE)0x00f6'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:8 '(LE)0x2500'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:8 '(LE)0x5ffe'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:15 '(LE)0x0003'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:15 '(LE)0x0002'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:15 '(LE)0x0012'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:15 '(LE)0x0004'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:8 '(LE)0x76c3'",
        "uvcdynctrl -d /dev/video{cam_id} -S 6:10 '(LE)0x0{cam_mode}00'",
        ]
        for command in command_list:
            subprocess.Popen(shlex.split(command.format(cam_id=cam_id,cam_mode=cam_mode)))

    def pub_image(self, publisher, image, header):
        try:
            self.ros_image = self.bridge.cv2_to_imgmsg(image, "bgr8")
            self.ros_image.header = header
            publisher.publish(self.ros_image)
        
        except CvBridgeError as e:
            print(e)

    def yaml_to_camera_info(self,yaml_file):
        with open(yaml_file, "r") as f :
            calib_data = yaml.load(f)
        camera_info_msg = CameraInfo()
        camera_info_msg.width = calib_data["image_width"]
        camera_info_msg.height = calib_data["image_height"]
        camera_info_msg.K = calib_data["camera_matrix"]["data"]
        camera_info_msg.D = calib_data["distortion_coefficients"]["data"]
        camera_info_msg.R = calib_data["rectification_matrix"]["data"]
        camera_info_msg.P = calib_data["projection_matrix"]["data"]
        camera_info_msg.distortion_model = calib_data["distortion_model"]
        return camera_info_msg


    def run(self):
        # left_cam_info = self.yaml_to_camera_info(self.left_yaml_file)
        # right_cam_info = self.yaml_to_camera_info(self.right_yaml_file)
        left_cam_info = CameraInfo()
        left_cam_info.width = 640
        left_cam_info.height = 480
        left_cam_info.K = [883.998642, 0.000000, 349.540253, 0.000000, 887.969815, 247.902874, 0.000000, 0.000000, 1.000000]
        left_cam_info.D = [0.125962, -0.905045, 0.006512, 0.007531, 0.000000]
        left_cam_info.R = [0.985389, 0.006639, 0.170189, -0.004920, 0.999933, -0.010521, -0.170248, 0.009530, 0.985355]
        left_cam_info.P = [1022.167889, 0.000000, 150.220785, 0.000000, 0.000000, 1022.167889, 249.024044, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000]
        left_cam_info.distortion_model = 'plumb_bob'

        right_cam_info = CameraInfo()
        right_cam_info.width = 640
        right_cam_info.height = 480
        right_cam_info.K = [874.019843, 0.000000, 331.121922, 0.000000, 875.918758, 244.867443, 0.000000, 0.000000, 1.000000]
        right_cam_info.D = [0.041385, -0.059698, 0.005392, 0.009075, 0.000000]
        right_cam_info.R = [0.976610, 0.003803, 0.214985, -0.005979, 0.999937, 0.009472, -0.214936, -0.010535, 0.976571]
        right_cam_info.P = [1022.167889, 0.000000, 150.220785, -41.006903, 0.000000, 1022.167889, 249.024044, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000]
        right_cam_info.distortion_model = 'plumb_bob'

        rate = rospy.Rate(20)
        while not rospy.is_shutdown():
            ret,frame=self.cam.read()
            if not ret:
                print('[ERROR]: frame error')
                break            
            expand_frame=cv2.resize(frame,None,fx=2,fy=1)

            left_image = expand_frame[0:480,0:640]
            right_image = expand_frame[0:480,640:1280]
            

            self.msg_header.frame_id = 'stereo_image'
            self.msg_header.stamp = rospy.Time.now()
            left_cam_info.header = self.msg_header
            right_cam_info.header = self.msg_header
            self.left_image_info_pub.publish(left_cam_info)
            self.right_image_info_pub.publish(right_cam_info)
            # self.pub_image(self.left_image_pub, left_image, self.msg_header )
            # self.pub_image(self.right_image_pub, right_image, self.msg_header )

            try:
                thread.start_new_thread( self.pub_image, (self.left_image_pub, left_image, self.msg_header, ))
                thread.start_new_thread( self.pub_image, (self.right_image_pub, right_image, self.msg_header, ))
            except:
                print("[ERROR]: unable to start thread")
            rate.sleep()

if __name__ == '__main__':
	lsc = LittleStereoCam()
	try:
		lsc.run()
	except rospy.ROSInterruptException: 
		pass

    
#!/usr/bin/env python
 
 
import time
import serial       
import binascii
import rospy
from geometry_msgs.msg import Quaternion, Vector3
from sensor_msgs.msg import Imu
import codecs
 
s=serial.Serial("/dev/ttyUSB0",115200)
rospy.init_node("imu")
imuPub = rospy.Publisher("imu", Imu, queue_size=1)
rate=rospy.Rate(100)
 
Hex_str=codecs.decode('770500560560','hex')
s.write(Hex_str)
 
data= str(binascii.b2a_hex(s.read(6)))
#print(data)
print('AUTO PUT DATA TYPE SETTING SUCCESS')
 
Hex_str=codecs.decode('7705000C0617','hex')
s.write(Hex_str)
data=str(binascii.b2a_hex(s.read(6)))
#print(data)
print('SET 100Hz OUTPUT FREQUNSE')
 
try:
    while not rospy.is_shutdown():
        data= str(binascii.b2a_hex(s.read(48)))
        g_value=data[26:44]
        a_value=data[44:62]
        q_value=data[62:95]
 
        #x_acc   
        x_acc=9.87933*int(g_value[1:6])/10000.0
        if int(g_value[0]):
            x_acc=-1*x_acc
 
        #y_acc 
        y_acc=9.87933*int(g_value[7:12])/10000.0
        if int(g_value[6]) :
            y_acc=-1*y_acc
 
        #z_acc  
        z_acc=9.87933*int(g_value[13:])/10000.0
        if int(g_value[12]):
            z_acc=-1*z_acc
    
 
        #an_x  
        an_x=int(a_value[1:6])/100.0/57.29578
        if int(a_value[0]):
            an_x=-1*an_x
 
        #an_y
        an_y=int(a_value[7:12])/100.0/57.29578
        if int(a_value[6]):
            an_y=-1*an_y
 
        #an_z
        an_z=int(a_value[13:])/100.0/57.29578
        if int(a_value[12]):
            an_z=-1*an_z
 
        #print('acc:x,y,z:',x_acc,y_acc,z_acc)
        #print('an_acc:x,y,z:',an_x,an_y,an_z)
    
        q_0=int(q_value[1:8])/1000000.0
        if int(q_value[0]):
            q_0=-1*q_0
 
        q_1=int(q_value[9:15])/1000000.0
        if int(q_value[8]):
            q_1=-1*q_1
 
        q_2=int(q_value[16:23])/1000000.0
        if int(q_value[15]):
            q_2=-1*q_2
 
        q_3=int(q_value[24:31])/1000000.0
        if int(q_value[23]):
            q_3=-1*q_3
 
        imuMsg = Imu()
        stamp = rospy.get_rostime()
        imuMsg.header.stamp, imuMsg.header.frame_id = stamp, "imu_link"
        imuMsg.orientation.x=0.707107*q_0
        imuMsg.orientation.y=0.707107*q_3
        imuMsg.orientation.z=-0.707107*q_2
        imuMsg.orientation.w=-0.707107*q_1
 
        
        #imuMsg.orientation_covariance = cov_orientation
        imuMsg.angular_velocity.x, imuMsg.angular_velocity.y, imuMsg.angular_velocity.z = an_y,-1.0*an_x,-1.0*an_z
        #imuMsg.angular_velocity_covariance = cov_angular_velocity
        imuMsg.linear_acceleration.x, imuMsg.linear_acceleration.y, imuMsg.linear_acceleration.z = -1.0*x_acc,-1.0*y_acc,-1.0*z_acc
        #imuMsg.linear_acceleration_covariance = cov_linear_acceleration
        imuPub.publish(imuMsg)
        rate.sleep()
except:
    Hex_str=codecs.decode('7705000C0011','hex')
    s.write(Hex_str)
    data= str(binascii.b2a_hex(s.read(6)))
    print('ANSER TYPE SETTING SUCCESS')
    pass
 

你可能感兴趣的:(自动驾驶,linux)