tensorflow基于BERT训练文本分类模型保存为PB(saved model)并部署

扫码关注“自然语言处理与算法”,讨论交流、顶会论文解读~
tensorflow基于BERT训练文本分类模型保存为PB(saved model)并部署_第1张图片

背景

基于BERT构建了文本分类任务,由于需要将模型部署至服务器,所以将模型保存为pb形式。
模型架构:BERT+softmax
模型保存策略:先将模型保存为ckpt形式然后转换为pb形式。
转换为pb形式时需要指定模型的输入节点,代码如下:

def serving_input_fn():
    # 保存模型为SaveModel格式
    # 采用最原始的feature方式,输入是feature Tensors。
    # 如果采用build_parsing_serving_input_receiver_fn,则输入是tf.Examples
     
    label_ids = tf.placeholder(tf.int32, [None, 3], name='label_ids')
    input_ids = tf.placeholder(tf.int32, [None, 200], name='input_ids')
    input_mask = tf.placeholder(tf.int32, [None, 200], name='input_mask')
    segment_ids = tf.placeholder(tf.int32, [None, 200], name='segment_ids')
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
        'label_ids': label_ids,
        'input_ids': input_ids,
        'input_mask': input_mask,
        'segment_ids': segment_ids,
    })()
    return input_fn

将ckpt转换为pb形式的代码,这里是在do_eval的时候:

if FLAGS.do_eval:
	 # trans_model_dir模型转换后输出目录
	 estimator._export_to_tpu = False
	 estimator.export_savedmodel(FLAGS.trans_model_dir, serving_input_fn)

生成的SaveModel:
在这里插入图片描述
variables文件下:
在这里插入图片描述
检查模型(命令行输入):

saved_model_cli show --dir  save_model/output --all

tensorflow基于BERT训练文本分类模型保存为PB(saved model)并部署_第2张图片
上图中有输入节点input_ids、input_mask、segment_ids、label_ids,以及输出节点probabilities。将测试数据对应的tensor输入到对应的输入节点即可调用训练好的模型进行计算,然后调用输出节点probabilities即可得到对应的值,这里得到的是概率值,是一个list列表,使用numpy中的argmax即可得到对应的label。这个地方回头会单独发一篇博客。

BERT文本分类完整源码

#!/usr/bin/env python
# -*- coding: utf-8 -*-


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import csv
import os
from bert import tokenization, modeling, optimization
import tensorflow as tf
import pickle

flags = tf.flags

FLAGS = flags.FLAGS

## Required parameters
flags.DEFINE_string(
    "data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

flags.DEFINE_string(
    "bert_config_file", None,
    "The config json file corresponding to the pre-trained BERT model. "
    "This specifies the model architecture.")

flags.DEFINE_string("task_name", None, "The name of the task to train.")

flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "output_dir", None,
    "The output directory where the model checkpoints will be written.")

flags.DEFINE_string(
    "trans_model_dir", None,
    "The trans_model_dir directory where the model will be written.")

## Other parameters

flags.DEFINE_string(
    "init_checkpoint", None,
    "Initial checkpoint (usually from a pre-trained BERT model).")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 200,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

flags.DEFINE_bool("do_train", False, "Whether to run training.")

flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")

flags.DEFINE_bool(
    "do_predict", False,
    "Whether to run the model in inference mode on the test set.")

flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")

flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")

flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")

flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")

flags.DEFINE_float("num_train_epochs", 3.0,
                   "Total number of training epochs to perform.")

flags.DEFINE_float(
    "warmup_proportion", 0.1,
    "Proportion of training to perform linear learning rate warmup for. "
    "E.g., 0.1 = 10% of training.")

flags.DEFINE_integer("save_checkpoints_steps", 1000,
                     "How often to save the model checkpoint.")

flags.DEFINE_integer("iterations_per_loop", 1000,
                     "How many steps to make in each estimator call.")

flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")

tf.flags.DEFINE_string(
    "tpu_name", None,
    "The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
    "url.")

tf.flags.DEFINE_string(
    "tpu_zone", None,
    "[Optional] GCE zone where the Cloud TPU is located in. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string(
    "gcp_project", None,
    "[Optional] Project name for the Cloud TPU-enabled project. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")

flags.DEFINE_integer(
    "num_tpu_cores", 8,
    "Only used if `use_tpu` is True. Total number of TPU cores to use.")


class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.
        Args:
          guid: Unique id for the example.
          text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
          text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
          label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class PaddingInputExample(object):
    """Fake example so the num input examples is a multiple of the batch size.
    When running eval/predict on the TPU, we need to pad the number of examples
    to be a multiple of the batch size, because the TPU requires a fixed batch
    size. The alternative is to drop the last batch, which is bad because it means
    the entire output data won't be generated.
    We use this class instead of `None` because treating `None` as padding
    battches could cause silent errors.
    """


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self,
                 input_ids,
                 input_mask,
                 segment_ids,
                 label_id,
                 is_real_example=True):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
        self.is_real_example = is_real_example


class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_test_examples(self, data_dir):
        """Gets a collection of `InputExample`s for prediction."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with tf.gfile.Open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines


'''自定义的processor'''

from sklearn.utils import shuffle
import pandas as pd


class MyProcessor(DataProcessor):

    # 读取文件
    def read_txt(self, filepath, type):
        df = pd.read_csv(filepath + '/' + type + '.csv', delimiter=",", names=['labels', 'text'], header=None, engine='python')
        df = shuffle(df)  # shuffle数据
        lines = []
        for data in df.iloc[:].itertuples():
            content = str(data.labels) + "\t" + str(data.text)
            lines.append(content)
        return lines

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self.read_txt(data_dir, 'train'), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self.read_txt(data_dir, 'dev'), "dev")

    # def get_test_examples(self, data_dir):
    #     """See base class."""
    #     return self._create_examples(
    #         self.read_txt(os.path.join(data_dir, "cnews.test.txt"), "test"), "test")

    def get_labels(self):
        """See base class."""

        df = pd.read_csv(FLAGS.data_dir + '/dev.csv', delimiter=",", names=['labels', 'text'], header=None)
        labels_df = df[['labels']]
        labels_df = labels_df.drop_duplicates()

        labels = []
        for data in labels_df.iloc[:].itertuples():
            labels.append(data.labels)
        # with open('./labels.txt', 'w', encoding='utf-8')as f4:
        #     f4.write(str(labels))
        #labels = ['0','1','2']
        return labels

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            split_line = line.strip().split("\t")
            text_a = tokenization.convert_to_unicode(split_line[1])
            text_b = None
            if set_type == "test":
                label = "6efaa392"
            else:
                label = tokenization.convert_to_unicode(split_line[0])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


def serving_input_fn():
    '''
    指定输入结点,测试时通过name属性传值,在模型进行do_eval时将此函数转入estimator.export_savedmodel(FLAGS.trans_model_dir, serving_input_fn)
    保存模型为SaveModel格式
    采用最原始的feature方式,输入是feature Tensors。
    如果采用build_parsing_serving_input_receiver_fn,则输入是tf.Examples
    '''
    label_ids = tf.placeholder(tf.int32, [None, 3], name='label_ids')
    input_ids = tf.placeholder(tf.int32, [None, 200], name='input_ids')
    input_mask = tf.placeholder(tf.int32, [None, 200], name='input_mask')
    segment_ids = tf.placeholder(tf.int32, [None, 200], name='segment_ids')
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
        'label_ids': label_ids,
        'input_ids': input_ids,
        'input_mask': input_mask,
        'segment_ids': segment_ids,
    })()
    return input_fn



def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(
            input_ids=[0] * max_seq_length,
            input_mask=[0] * max_seq_length,
            segment_ids=[0] * max_seq_length,
            label_id=0,
            is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    # 保存标签信息和枚举的映射关系 并写入label2id.pkl 该文件会一起输出到trans_model_dir文件夹下
    output_label2id_file = os.path.join(FLAGS.trans_model_dir, "label2id.pkl")
    if not os.path.exists(output_label2id_file):
        with open(output_label2id_file, 'wb') as w:
            pickle.dump(label_map, w)

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_id=label_id,
        is_real_example=True)
    return feature


def file_based_convert_examples_to_features(
        examples, label_list, max_seq_length, tokenizer, output_file):
    """Convert a set of `InputExample`s to a TFRecord file."""

    writer = tf.python_io.TFRecordWriter(output_file)

    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

        feature = convert_single_example(ex_index, example, label_list,
                                         max_seq_length, tokenizer)

        def create_int_feature(values):
            f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
            return f

        features = collections.OrderedDict()
        features["input_ids"] = create_int_feature(feature.input_ids)
        features["input_mask"] = create_int_feature(feature.input_mask)
        features["segment_ids"] = create_int_feature(feature.segment_ids)
        features["label_ids"] = create_int_feature([feature.label_id])
        features["is_real_example"] = create_int_feature(
            [int(feature.is_real_example)])

        tf_example = tf.train.Example(features=tf.train.Features(feature=features))
        writer.write(tf_example.SerializeToString())
    writer.close()


def file_based_input_fn_builder(input_file, seq_length, is_training,
                                drop_remainder):
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    name_to_features = {
        "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
        "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "label_ids": tf.FixedLenFeature([], tf.int64),
        "is_real_example": tf.FixedLenFeature([], tf.int64),
    }

    def _decode_record(record, name_to_features):
        """Decodes a record to a TensorFlow example."""
        example = tf.parse_single_example(record, name_to_features)

        # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
        # So cast all int64 to int32.
        for name in list(example.keys()):
            t = example[name]
            if t.dtype == tf.int64:
                t = tf.to_int32(t)
            example[name] = t

        return example

    def input_fn(params):
        """The actual input function."""
        batch_size = params["batch_size"]

        # For training, we want a lot of parallel reading and shuffling.
        # For eval, we want no shuffling and parallel reading doesn't matter.
        d = tf.data.TFRecordDataset(input_file)
        if is_training:
            d = d.repeat()
            d = d.shuffle(buffer_size=100)

        d = d.apply(
            tf.contrib.data.map_and_batch(
                lambda record: _decode_record(record, name_to_features),
                batch_size=batch_size,
                drop_remainder=drop_remainder))

        return d

    return input_fn


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
    """Creates a classification model."""
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    # In the demo, we are doing a simple classification task on the entire
    # segment.
    #
    # If you want to use the token-level output, use model.get_sequence_output()
    # instead.
    output_layer = model.get_pooled_output()

    hidden_size = output_layer.shape[-1].value

    output_weights = tf.get_variable(
        "output_weights", [num_labels, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
        "output_bias", [num_labels], initializer=tf.zeros_initializer())

    with tf.variable_scope("loss"):
        if is_training:
            # I.e., 0.1 dropout
            output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

        logits = tf.matmul(output_layer, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        probabilities = tf.nn.softmax(logits, axis=-1)
        log_probs = tf.nn.log_softmax(logits, axis=-1)

        one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_mean(per_example_loss)

        return (loss, per_example_loss, logits, probabilities)


def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
    """Returns `model_fn` closure for TPUEstimator."""

    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        tf.logging.info("*** Features ***")
        for name in sorted(features.keys()):
            tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]
        label_ids = features["label_ids"]
        is_real_example = None
        if "is_real_example" in features:
            is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
        else:
            is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        (total_loss, per_example_loss, logits, probabilities) = create_model(
            bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
            num_labels, use_one_hot_embeddings)

        tvars = tf.trainable_variables()
        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
            if use_tpu:

                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:

            train_op = optimization.create_optimizer(
                total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                train_op=train_op,
                scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.EVAL:

            def metric_fn(per_example_loss, label_ids, logits, is_real_example):
                predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
                accuracy = tf.metrics.accuracy(
                    labels=label_ids, predictions=predictions, weights=is_real_example)
                loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
                return {
                    "eval_accuracy": accuracy,
                    "eval_loss": loss,
                }

            eval_metrics = (metric_fn,
                            [per_example_loss, label_ids, logits, is_real_example])
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                eval_metrics=eval_metrics,
                scaffold_fn=scaffold_fn)
        else:
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                predictions={"probabilities": probabilities},
                scaffold_fn=scaffold_fn)
        return output_spec

    return model_fn


# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    all_input_ids = []
    all_input_mask = []
    all_segment_ids = []
    all_label_ids = []

    for feature in features:
        all_input_ids.append(feature.input_ids)
        all_input_mask.append(feature.input_mask)
        all_segment_ids.append(feature.segment_ids)
        all_label_ids.append(feature.label_id)

    def input_fn(params):
        """The actual input function."""
        batch_size = params["batch_size"]

        num_examples = len(features)

        # This is for demo purposes and does NOT scale to large data sets. We do
        # not use Dataset.from_generator() because that uses tf.py_func which is
        # not TPU compatible. The right way to load data is with TFRecordReader.
        d = tf.data.Dataset.from_tensor_slices({
            "input_ids":
                tf.constant(
                    all_input_ids, shape=[num_examples, seq_length],
                    dtype=tf.int32),
            "input_mask":
                tf.constant(
                    all_input_mask,
                    shape=[num_examples, seq_length],
                    dtype=tf.int32),
            "segment_ids":
                tf.constant(
                    all_segment_ids,
                    shape=[num_examples, seq_length],
                    dtype=tf.int32),
            "label_ids":
                tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
        })

        if is_training:
            d = d.repeat()
            d = d.shuffle(buffer_size=100)

        d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
        return d

    return input_fn


# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer):
    """Convert a set of `InputExample`s to a list of `InputFeatures`."""

    features = []
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

        feature = convert_single_example(ex_index, example, label_list,
                                         max_seq_length, tokenizer)

        features.append(feature)
    return features


def main(*argv):
    base_dir = '/home/zhanghongkuan/BERT-NER-CRF/'
    pretrain_dir = base_dir + 'chinese_L-12_H-768_A-12'
    output_dir = base_dir + 'output_cls'
    trans_model_dir = base_dir + 'output_cls/trans'
    task_name = 'cls'
    vocab_file = pretrain_dir + '/vocab.txt'
    bert_config_file = pretrain_dir + '/bert_config.json'
    init_checkpoint = pretrain_dir + '/bert_model.ckpt'

    mkdir_dir = lambda x: os.makedirs(x) if not os.path.exists(x) else True  # 目录是否存在,不存在则创建
    mkdir_dir(trans_model_dir)

    FLAGS.task_name = task_name
    FLAGS.data_dir = '/home/zhanghongkuan/BERT-NER-CRF/data'
    FLAGS.vocab_file = vocab_file
    FLAGS.bert_config_file = bert_config_file
    FLAGS.output_dir = output_dir
    FLAGS.trans_model_dir = trans_model_dir
    FLAGS.init_checkpoint = init_checkpoint
    FLAGS.do_train = True
    FLAGS.do_eval = True
    FLAGS.train_batch_size = 16
    FLAGS.max_seq_length = 200
    FLAGS.num_train_epochs = 5
    FLAGS.learning_rate = 1e-5
    tf.logging.set_verbosity(tf.logging.INFO)


    processors = {
        "cls": MyProcessor
    }

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=tf.contrib.tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        train_examples = processor.get_train_examples(FLAGS.data_dir)
        num_train_steps = int(
            len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(
        bert_config=bert_config,
        num_labels=len(label_list),
        init_checkpoint=FLAGS.init_checkpoint,
        learning_rate=FLAGS.learning_rate,
        num_train_steps=num_train_steps,
        num_warmup_steps=num_warmup_steps,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)


    if FLAGS.do_train:
        train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
        file_based_convert_examples_to_features(
            train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True)
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)



    if FLAGS.do_eval:
        eval_examples = processor.get_dev_examples(FLAGS.data_dir)
        num_actual_eval_examples = len(eval_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on. These do NOT count towards the metric (all tf.metrics
            # support a per-instance weight, and these get a weight of 0.0).
            while len(eval_examples) % FLAGS.eval_batch_size != 0:
                eval_examples.append(PaddingInputExample())

        eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
        file_based_convert_examples_to_features(
            eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(eval_examples), num_actual_eval_examples,
                        len(eval_examples) - num_actual_eval_examples)
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        # This tells the estimator to run through the entire set.
        eval_steps = None
        # However, if running eval on the TPU, you will need to specify the
        # number of steps.
        if FLAGS.use_tpu:
            assert len(eval_examples) % FLAGS.eval_batch_size == 0
            eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        eval_input_fn = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder)

        result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

        '''trans_model_dir模型转换后输出目录,将模型转换为saved model'''
        estimator._export_to_tpu = False
        estimator.export_savedmodel(FLAGS.trans_model_dir, serving_input_fn)

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        with tf.gfile.GFile(output_eval_file, "w") as writer:
            tf.logging.info("***** Eval results *****")
            for key in sorted(result.keys()):
                tf.logging.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))


    if FLAGS.do_predict:
        predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(PaddingInputExample())

        predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
        file_based_convert_examples_to_features(predict_examples, label_list,
                                                FLAGS.max_seq_length, tokenizer,
                                                predict_file)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder)

        result = estimator.predict(input_fn=predict_input_fn)

        output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
        with tf.gfile.GFile(output_predict_file, "w") as writer:
            num_written_lines = 0
            tf.logging.info("***** Predict results *****")
            for (i, prediction) in enumerate(result):
                probabilities = prediction["probabilities"]
                if i >= num_actual_predict_examples:
                    break
                output_line = "\t".join(
                    str(class_probability)
                    for class_probability in probabilities) + "\n"
                writer.write(output_line)
                num_written_lines += 1
        assert num_written_lines == num_actual_predict_examples


if __name__ == "__main__":
    # flags.mark_flag_as_required("data_dir")
    # flags.mark_flag_as_required("task_name")
    # flags.mark_flag_as_required("vocab_file")
    # flags.mark_flag_as_required("bert_config_file")
    # flags.mark_flag_as_required("output_dir")
    # tf.app.run()

    main()

调用模型进行预测之前需要先把输入数据转换为BERT要求的input_ids、input_mask、segment_ids
请转向我的另一篇博客中文文本转换为bert输入的input_ids、input_mask、segment_ids

参考:
BERT-Tensorflow模型部署(CPU版和GPU版)

你可能感兴趣的:(自然语言处理,tensorflow,深度学习,NLP,BERT)