基础知识还是得看ng
import torch
import torch.nn as nn
import torch.nn.functional as F
# 卷积层
x = torch.rand(1, 1, 28, 28)
layer = nn.Conv2d(1, 3, kernel_size=3, stride=1, padding=0)
out = layer.forward(x)
print(out.size()) # torch.Size([1, 3, 26, 26])
layer = nn.Conv2d(1, 3, kernel_size=3, stride=1, padding=1)
out = layer.forward(x)
print(out.size()) # torch.Size([1, 3, 28, 28])
layer = nn.Conv2d(1, 3, kernel_size=3, stride=2, padding=1)
out = layer.forward(x)
print(out.size()) # torch.Size([1, 3, 14, 14])
out = layer(x) # __call__ 推荐使用,不推荐使用forward
print(out.size()) # torch.Size([1, 3, 14, 14])
# print(layer.weight)
print(layer.weight.shape) # torch.Size([3, 1, 3, 3])
print(layer.bias.shape) # torch.Size([3])
w = torch.rand(16, 3, 5, 5)
b = torch.rand(16)
x = torch.randn(1, 3, 28, 28)
out = F.conv2d(x, w, b, stride=2, padding=2)
print(out.shape) # torch.Size([1, 16, 14, 14])
Pooling:feature map变小,与隔行采样(Down sample)不同
# 池化层
x = out
print(x.shape) # torch.Size([1, 16, 14, 14])
layer = nn.MaxPool2d(2, stride=2)
out = layer(x)
print(out.shape) # torch.Size([1, 16, 7, 7])
out = F.avg_pool2d(x, 2, stride=2)
print(out.shape) # torch.Size([1, 16, 7, 7])
Up sample
# 上采样
x = out
out = F.interpolate(x, scale_factor=2, mode='nearest')
print(out.shape) # torch.Size([1, 16, 14, 14])
ReLU
# ReLU
print(x.shape) # torch.Size([1, 16, 7, 7])
layer = nn.ReLU(inplace=True)
out = layer(x)
print(out.shape) # torch.Size([1, 16, 7, 7])
out = F.relu(x)
print(out.shape) # torch.Size([1, 16, 7, 7])
1d
import torch
import torch.nn as nn
x = torch.randn(100, 16, 784)
layer = nn.BatchNorm1d(16, momentum=0.1, affine=True) # affine自动更新beta、gama
# layer.eval() # test时加上
out = layer(x)
print(layer.running_mean)
print(layer.running_var)
for i in range(100):
out = layer(x)
print(layer.running_mean)
print(layer.running_var)
"""
tensor([-3.3207e-04, -2.9735e-04, 8.1316e-04, 9.3234e-05, 1.9049e-04,
6.9931e-04, 2.9378e-04, 3.1153e-05, 3.4325e-04, 3.2283e-04,
-2.0425e-04, -4.0346e-04, 1.7246e-04, -1.9482e-04, -1.2086e-04,
-8.4132e-04])
tensor([0.9999, 0.9999, 1.0002, 1.0006, 0.9997, 1.0003, 1.0000, 1.0002, 1.0003,
1.0000, 0.9998, 1.0000, 1.0005, 0.9996, 0.9997, 0.9999])
tensor([-0.0033, -0.0030, 0.0081, 0.0009, 0.0019, 0.0070, 0.0029, 0.0003,
0.0034, 0.0032, -0.0020, -0.0040, 0.0017, -0.0019, -0.0012, -0.0084])
tensor([0.9986, 0.9987, 1.0023, 1.0065, 0.9969, 1.0033, 0.9997, 1.0022, 1.0029,
1.0004, 0.9981, 0.9999, 1.0053, 0.9957, 0.9972, 0.9985])
"""
layer.running_mean
和layer.running_var
得到的是全局的均值和方差,不是当前Batch上的,第一次只跑了一个Batch,现在还没有办法直接查看某个Batch上的这两个统计量的值。第一次只进行一次前向传播,在前向传播中来更新均值和方差的值: μ ′ = ( 1 − m ) μ + m μ t = ( 1 − 0.1 ) × 0 + 0.1 × 0.5 = 0.05 \mu '= (1-m) \mu + m \mu _t= ( 1 − 0.1 ) × 0 + 0.1 × 0.5 = 0.05 μ′=(1−m)μ+mμt=(1−0.1)×0+0.1×0.5=0.05
默认动量m = 0.1, μ \mu μ是更新前的均值(初始值为0), μ t \mu_t μt是当前batch的平均值。进行多次前向传播,均值和方差就会趋于数据真实分布
注:test时要加上
layer.eval()
,test不进行反向传播,即 β \beta β和 γ \gamma γ不更新
2d
# 接卷积神经网络实例
print(x.shape) # torch.Size([1, 16, 7, 7])
layer = nn.BatchNorm2d(16)
out = layer(x)
print(out.shape) # torch.Size([1, 16, 7, 7])
print(layer.weight.shape) # torch.Size([16])
print(layer.bias.shape) # torch.Size([16])
print(vars(layer)) # layer的参数
Advantages
ImageNet: LeNet-5 → \rightarrow → AlexNet → \rightarrow → VGG → \rightarrow → GoogLeNet → \rightarrow → ResNet → \rightarrow → Inception
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlk(nn.Module):
def __init__(self, ch_in, ch_out):
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, h, w]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out = self.extra(x) + out
return out
net.load_state_dict(torch.load('ckpt.mdl'))
torch.save(net.state_dict(), 'ckpt.mdl')
net.train()
net.eval()
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, input):
return input.view(input.size(0), -1)
class TestNet(nn.Module):
def __init__(self):
super(TestNet, self).__init__()
self.net = nn.Sequential(nn.Conv2d(1, 16, stride=1, padding=1),
nn.MaxPool2d(2, 2),
Flatten(),
nn.Linear(1*14*14, 10))
def forward(self, x):
return self.net(x)
Limited Data
Data argumentation
transforms.RandomHorizontalFlip()
随机水平翻转transforms.RandomVertialFlip()
随机垂直翻转transforms.RandomRotation(15)
随机旋转,不超过15度transforms.RandomRotation([90, 180, 270])
随机在指定角度中旋转transforms.Resize([32, 32])
transforms.RandomCrop([28, 28])
main.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
from Pytorch21_7_29.conv.lenet5 import Lenet5
from Pytorch21_7_29.conv.resnet import ResNet18
def main():
batch_size = 32
cifar_train = datasets.CIFAR10('cifar', train=True, transform=transforms.Compose([
transforms.Resize([32, 32]),
transforms.ToTensor()
]), download=True)
cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
cifar_test = datasets.CIFAR10('cifar', train=False, transform=transforms.Compose([
transforms.Resize([32, 32]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]), download=True)
cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)
x, label = iter(cifar_train).next()
print("x:", x.shape, 'label:', label.shape) # x: torch.Size([32, 3, 32, 32]) label: torch.Size([32])
device = torch.device('cuda')
# model = Lenet5().to(device)
model = ResNet18().to(device)
criteon = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
print(model)
for epoch in range(1000):
model.train()
for batch_idx, (x, label) in enumerate(cifar_train):
x, label = x.to(device), label.to(device)
logits = model(x)
# logits: [b, 10] label: [b]
loss = criteon(logits, label) # tensor scalar
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
#
print(epoch, loss.item())
# 测试不需要构建计算图
model.eval()
with torch.no_grad():
# test
total_correct = 0
total_num = 0
for x, label in cifar_test:
x, label = x.to(device), label.to(device)
logits = model(x)
pred = logits.argmax(dim=1)
total_correct += torch.eq(pred, label).float().sum().item()
total_num += x.size(0)
acc = total_correct / total_num
print(epoch, acc)
if __name__ == '__main__':
main()
"""
Lenet5(
(conv_unit): Sequential(
(0): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(1): AvgPool2d(kernel_size=2, stride=2, padding=0)
(2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(3): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(fc_unit): Sequential(
(0): Linear(in_features=400, out_features=120, bias=True)
(1): ReLU()
(2): Linear(in_features=120, out_features=84, bias=True)
(3): ReLU()
(4): Linear(in_features=84, out_features=10, bias=True)
)
(criteon): CrossEntropyLoss()
)
ResNet18(
(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(3, 3))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(blk1): ResBlk(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk2): ResBlk(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk3): ResBlk(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk4): ResBlk(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential()
)
(outlayer): Linear(in_features=512, out_features=10, bias=True)
)
"""
lenet5.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class Lenet5(nn.Module):
"""
for cifar10 dataset.
"""
def __init__(self):
super(Lenet5, self).__init__()
self.conv_unit = nn.Sequential(
# x:[b, 3, 32, 32] => [b, 6, 28, 28]
nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
# x:[b, 6, 14, 14] => [b, 16, 10, 10]
nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
# x:[b, 16, 5, 5] => [b, 400]
)
# flatten
# fc unit
self.fc_unit = nn.Sequential(
nn.Linear(16*5*5, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, 10)
)
# self.criteon = nn.MSELoss() # logistics问题使用
self.criteon = nn.CrossEntropyLoss() # 一般分类问题使用
def forward(self, x):
"""
:param x: [b, 3, 32, 32]
:return:
"""
batch_size = x.size(0)
x = self.conv_unit(x)
x = x.view(batch_size, -1) # -1指16*5*5
logits = self.fc_unit(x)
# pred = F.softmax(logits, dim=1) 交叉熵函数内包含了softmax
# loss = self.criteon(logits, y)
return logits
def main():
net = Lenet5()
tmp = torch.randn(2, 3, 32, 32)
out = net(tmp)
print('lenet_out:', out.shape) # lenet_out: torch.Size([2, 10])
if __name__ == '__main__':
main()
resnet.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlk(nn.Module):
"""
resnet block
"""
def __init__(self, ch_in, ch_out, stride=1):
"""
:param ch_in:
:param ch_out:
"""
super(ResBlk, self).__init__()
# we add stride support for resblk, which is distinct from tutorials.
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, h, w]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
"""
:param x: [b, ch, h, w]
:return:
"""
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# short cut
out = self.extra(x) + out
out = F.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
nn.BatchNorm2d(64)
)
# followed 4 blocks
# [b, 64, h, w] => [b, 128, h, w]
self.blk1 = ResBlk(64, 128, stride=2)
# [b, 128, h, w] => [b, 256, h, w]
self.blk2 = ResBlk(128, 256, stride=2)
# [b, 256, h, w] => [b, 512, h, w]
self.blk3 = ResBlk(256, 512, stride=2)
# [b, 512, h, w] => [b, 1024, h, w]
self.blk4 = ResBlk(512, 512, stride=2)
self.outlayer = nn.Linear(512*1*1, 10)
def forward(self, x):
"""
:param x:
:return:
"""
x = F.relu(self.conv1(x))
x = self.blk1(x)
x = self.blk2(x)
x = self.blk3(x)
x = self.blk4(x)
# print("after_conv:", x.shape) # torch.Size([32, 512, 2, 2])
# [b, 512, h, w] => [b, 512, 1, 1]
x = F.adaptive_avg_pool2d(x, [1, 1])
# print("after_pool:", x.shape) # torch.Size([32, 512, 1, 1])
x = x.view(x.size(0), -1)
x = self.outlayer(x)
return x
def main():
blk = ResBlk(64, 128, stride=2)
tmp = torch.randn(2, 64, 32, 32)
out = blk(tmp)
print("block:", out.shape) # torch.Size([2, 128, 16, 16])
x = torch.randn(2, 3, 32, 32)
model = ResNet18()
out = model(x)
print("resnet:", out.shape) # torch.Size([2, 10])
if __name__ == '__main__':
main()