概述
在线上遇到了因节点名哈希值冲突导致的部分机器无负载问题。10台机器中,冲突的机器达到了4台之多。假设哈希的概率是平均的。10台机器中,不存在冲突的概率接近
>>> 1 - (1.0 / (2 ** 32)) * 10
0.9999999976716936
实际上,10台中哈希值冲突了6台。于是看源码找答案。
过程
先从phash2 api入手
erlang 的 api调用方式和 linux有相似之处。通过函数指针数组。
erl_bif_list.h 中看到,我们调用的phash2对应phash2_2。
BIF_LIST(am_erlang,am_phash,2,phash_2,phash_2,37)
BIF_LIST(am_erlang,am_phash2,1,phash2_1,phash2_1,38)
BIF_LIST(am_erlang,am_phash2,2,phash2_2,phash2_2,39)
bif.c:4905
BIF_RETTYPE phash2_2(BIF_ALIST_2)
{
Uint32 hash;
Uint32 final_hash;
Uint32 range;
Eterm trap_state = THE_NON_VALUE;
/* Check for special case 2^32 */
if (term_equals_2pow32(BIF_ARG_2)) {
range = 0;
} else {
Uint u;
if (!term_to_Uint(BIF_ARG_2, &u) || ((u >> 16) >> 16) != 0 || !u) {
BIF_ERROR(BIF_P, BADARG);
}
range = (Uint32) u;
}
hash = trapping_make_hash2(BIF_ARG_1, &trap_state, BIF_P);
if (trap_state != THE_NON_VALUE) {
BIF_TRAP2(&bif_trap_export[BIF_phash2_2], BIF_P, trap_state, BIF_ARG_2);
}
if (range) {
final_hash = hash % range; /* [0..range-1] */
} else {
final_hash = hash;
}
/*
* Return either a small or a big. Use the heap for bigs if there is room.
*/
#if defined(ARCH_64)
BIF_RET(make_small(final_hash));
#else
if (IS_USMALL(0, final_hash)) {
BIF_RET(make_small(final_hash));
} else {
Eterm* hp = HAlloc(BIF_P, BIG_UINT_HEAP_SIZE);
BIF_RET(uint_to_big(final_hash, hp));
}
#endif
}
通过调试可以确认
1298 {
(gdb) bt
#0 make_hash2_helper (term_param=203, can_trap=1, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1298
#1 0x0000558545a0a5eb in trapping_make_hash2 (term=203, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1983
#2 0x0000558545a284ad in phash2_1 (A__p=0x7fd2b9900b88, BIF__ARGS=0x7fd2ba200200, A__I=0x7fd2b7d5ef60) at beam/bif.c:4897
#3 0x00005585459455b2 in process_main (x_reg_array=0x7fd2ba200200, f_reg_array=0x7fd2ba202240) at x86_64-unknown-linux-gnu/opt/smp/beam_cold.h:121
#4 0x00005585459613ac in sched_thread_func (vesdp=0x7fd2b89440c0) at beam/erl_process.c:8498
#5 0x0000558545c47a63 in thr_wrapper (vtwd=0x7ffcd94d55a0) at pthread/ethread.c:122
#6 0x00007fd2fb2896db in start_thread (arg=0x7fd2b7bff700) at pthread_create.c:463
#7 0x00007fd2fadaa71f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
phash2 对atom的处理
erts/emulator/beam/utils.c:1418
直接用atom的值找到erts_atom_table对应的哈希值。
if (primary_tag(term) == TAG_PRIMARY_IMMED1) {
switch (term & _TAG_IMMED1_MASK) {
case _TAG_IMMED1_IMMED2:
switch (term & _TAG_IMMED2_MASK) {
case _TAG_IMMED2_ATOM:
/* Fast, but the poor hash value should be mixed. */
return atom_tab(atom_val(term))->slot.bucket.hvalue;
}
可以看到,erts_atom_table是全局的,上限为1024*1024哈希表。这也是为什么原子最大只能存储1048576。
erts/emulator/beam/atom.h:atom_tab
atom_tab(Uint i)
{
return (Atom *) erts_index_lookup(&erts_atom_table, i);
}
erts/emulator/beam/index.h:erts_index_lookup
seg_table是一个 1024*1024 的二维数组
ERTS_GLB_INLINE IndexSlot*
erts_index_lookup(IndexTable* t, Uint ix)
{
return t->seg_table[ix>>INDEX_PAGE_SHIFT][ix&INDEX_PAGE_MASK];
}
搜索erts_atom_table从代码可以看到,是生成原子时,在修改erts_atom_table时,计算的哈希值。问题的关键在于原子的哈希值是如何计算的。
atom hash
从atom.c:init_atom_table中可以看到。原子的哈希值是通过init时赋值的函数指针计算的,具体逻辑如下:
atom.c:atom_hash
static HashValue
atom_hash(Atom *obj)
{
byte *p = obj->name;
int len = obj->len;
HashValue h = 0, g;
byte v;
while (len--)
{
v = *p++;
/* latin1 clutch for r16 */
if (len && (v & 0xFE) == 0xC2 && (*p & 0xC0) == 0x80)
{
v = (v << 6) | (*p & 0x3F);
p++;
len--;
}
/* normal hashpjw follows for v */
h = (h << 4) + v;
if ((g = h & 0xf0000000))
{
h ^= (g >> 24);
h ^= g;
}
}
return h;
}
调试确认,节点名atom的计算,也是走这里,那么为什么会冲突呢?
Thread 6 "2_scheduler" hit Breakpoint 1, atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131
131 byte* p = obj->name;
(gdb) p obj->name
$19 = (byte *) 0x7f3a08580180 "test1@ubuntu"
(gdb) p obj->len
$20 = 12
(gdb) bt
#0 atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131
#1 0x000055c20bd115ab in hash_fetch (h=0x55c20c1d8040 , tmpl=0x7f39bfef92d0, hash=0x55c20bd12a67 ,
cmp=0x55c20bd12b48 ) at beam/hash.h:133
#2 0x000055c20bd11d27 in hash_get (h=0x55c20c1d8040 , tmpl=0x7f39bfef92d0) at beam/hash.c:228
#3 0x000055c20bd124bc in index_get (t=0x55c20c1d8040 , tmpl=0x7f39bfef92d0) at beam/index.c:109
#4 0x000055c20bd12fb7 in erts_atom_put_index (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:299
#5 0x000055c20bd13115 in erts_atom_put (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:350
#6 0x000055c20bc57596 in list_to_atom_1 (A__p=0x7f39bf203588, BIF__ARGS=0x7f39c67c4280, A__I=0x7f39be3d9590) at beam/bif.c:2913
#7 0x000055c20bb65087 in process_main (x_reg_array=0x7f39c67c4280, f_reg_array=0x7f39c67c6300) at x86_64-unknown-linux-gnu/opt/smp/beam_hot.h:331
#8 0x000055c20bb973ac in sched_thread_func (vesdp=0x7f39c4f4e480) at beam/erl_process.c:8498
#9 0x000055c20be7da63 in thr_wrapper (vtwd=0x7ffc7f688b60) at pthread/ethread.c:122
#10 0x00007f3a078816db in start_thread (arg=0x7f39bfefc700) at pthread_create.c:463
#11 0x00007f3a073a271f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
(gdb) printf "%d,%s\n", h, obj->name
1385189,test1@ubuntu
(gdb) printf "%d,%s\n", h, obj->name
1385013,test4@ubuntu
(gdb) printf "%d,%s\n", h, obj->name
1384965,test7@ubuntu
用python写了同样的算法,发现冲突概率真的很高,参考结论里的链接。
def atom_hash(s):
h = 0
g = 0
for v in s:
h = (h << 4) + ord(v)
g = h & 0xf0000000
if g:
h ^= (g >> 24)
h ^= g
return h
for num in range(10):
value = "test{0}@ubuntu".format(num)
hash_val = atom_hash(value)
print(value, hash_val)
test0@ubuntu 1385205
test1@ubuntu 1385189
test2@ubuntu 1385173
test3@ubuntu 1385157
test4@ubuntu 1385013
test5@ubuntu 1384997
test6@ubuntu 1384981
test7@ubuntu 1384965
test8@ubuntu 1385077
test9@ubuntu 1385061
结论
- 原子的哈希值和原子的字符串展示相关,即同样的原子,在不同的节点上(同样的erlang vm版本,同样的哈希算法),那么该原子的哈希值是一样的。
- atom_hash使用了hashpjw算法,该算法,即erlang原子哈希值的生成算法很容易冲突。没找到更权威的资料了:https://blog.csdn.net/iteye_1...