- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 机器学习(Machine Learning)
七指琴魔御清绝
大数据学习
原文链接:http://blog.csdn.net/zhoubl668/article/details/42921187希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Ada
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- 一文理清:阿里系数据中台-数据治理工具集(傻傻也能分清楚)
Debug_Snail
HadoopBigData技术工具人工智能hadoop数据仓库
阿里云提供的大数据与数据分析产品种类较多,各产品的定位和核心功能有所不同。以下是对DataWorks、MaxCompute、Dataphin、AnalyticDBforMySQL(ADB)、QuickBI、EMR的详细梳理。一、核心产品定位与功能DataWorks定位:一站式大数据开发治理平台,提供数据集成、开发、调度、治理、服务等全链路能力。核心功能:数据集成:支持异构数据源(如数据库、OSS、
- 机器学习实战——音乐流派分类(主页有源码)
喵了个AI
机器学习实战机器学习分类人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.简介音乐流派分类是音乐信息检索(MusicInformationRetrieval,MIR)中的一个重要任务,旨在通过分析音频信号的特征,将音乐自动分类到不同的流派(如古典、摇滚、爵士、流行等)。随着数字音乐平台的普及,音乐流派分类技术被广泛应用于音乐推荐、自动标签生成和音乐库管理
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发引言在HarmonyNext生态系统中,分布式机器学习是其核心特性之一。通过分布式机器学习,开发者可以充分利用多设备的计算资源,实现复杂模型的训练与推理。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的分布式机器学习应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的分
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 机器学习之KMeans算法
Mr终游
机器学习机器学习算法kmeans
目录一、KMeans的核心思想二、KMeans算法流程三、KMeans的关键点1.优点:2.缺点:四、如何确定最佳k值1.肘部法则2.轮廓系数五、Kmeans的典型应用场景六、代码示例KMeans是一种广泛使用的无监督学习算法,主要用于聚类分析(Clustering)。它的目标是将数据集划分为K个互不重叠的子集(簇,Cluster),使得同一簇内的数据点尽可能相似,不同簇之间的数据点尽可能差异显著
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 架构生命周期(演进史)技术应服务于业务
Limbo1213
java架构生命周期演进史
架构生命周期简介本篇幅主要讲述架构的各阶段出现的需求问题、业务问题、性能问题以及相应的解决方案。1、web1.0时代(1996年左右)2、web2.0时代(2006年左右)3、互联网时代(2012年左右)–》互联网±-》智慧城市。滴滴打车。饿了么(工商局)4、大数据+云计算5、AI未来以来时代…第一时期单一应用架构allinone。所有的模块和代码都在一起。技术也不分层。(2000年左右)网站的初
- MySQL-关于如何保存“大数据”
赵师的工作日
mysql大数据数据库
作者:赵师的工作日(赵明中)现役OracleACE、MySQL8.0ocp、TiDBPCTA\PCTP、ElasticsearchCertifiedEngineer微信号:mzzhao23微信公众号:赵师的工作日墨天轮社区:赵师的工作日CSND:赵师的工作日数据库的种类有很多,各类数据库充分发挥各自的优势从而保证业务稳定运行,mysql轻量级、关键数据,redis缓存、快,ES搜索,Mongodb
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- PIPCA个人信息保护合规审计师认证介绍!
熙丫 13381482386
大数据
个人信息保护合规审计师"(PersonalInformationProtectionComplianceAuditor-CCRC)是中国网络安全审查认证中心与市场监管大数据中心为深入贯彻实施《个人信息保护法》,推动个人信息处理者切实履行合规审计职责,针对企事业单位及第三方机构中从事个人信息保护合规审计(简称“个保审计”)的专业人员,依据《个人信息保护法》、《网络安全从业人员能力基本要求》
- Apache Doris 实现毫秒级查询响应
随风九天
匠心数据库服务javaapacheApacheDoris
1.引言1.1数据分析的重要性随着大数据时代的到来,企业对实时数据分析的需求日益增长。快速、准确地获取数据洞察成为企业在竞争中脱颖而出的关键。传统的数据库系统在处理大规模数据时往往面临性能瓶颈,难以满足实时分析的需求。例如,一个电商公司需要实时监控销售数据以调整库存和营销策略,而传统的数据库可能需要数分钟甚至数小时才能生成报表,这显然无法满足业务需求。1.2ApacheDoris简介ApacheD
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- AI 驱动的软件测试革命:从自动化到智能化的进阶之路
綦枫Maple
AI+软件测试人工智能自动化运维
引言:软件测试的智能化转型浪潮在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注入了新动能,通过机器学习、深度学习、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。本文将深入探讨AI与软件测试的融合路径,结合技术原理、工具实践与行业趋势,为读者呈现一幅
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- ClickHouse Keeper 源码解析
阿里云云栖号
云栖号技术分享java开发语言后端
简介:ClickHouse社区在21.8版本中引入了ClickHouseKeeper。ClickHouseKeeper是完全兼容Zookeeper协议的分布式协调服务。本文对开源版本ClickHousev21.8.10.19-lts源码进行了解析。作者简介:范振(花名辰繁),阿里云开源大数据-OLAP方向负责人。内容框架背景架构图核心流程图梳理内部代码流程梳理Nuraft关键配置排坑结论关于我们R
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- 供应链工作效率如何提升
dev.null
社会供应链
提升供应链工作效率可以从以下几个关键方面入手:1.优化供应链管理数据驱动决策:利用AI和大数据分析,提高预测准确性,优化库存管理。供应链可视化:采用ERP(企业资源计划)和SCM(供应链管理)系统,实现实时跟踪和监控。流程自动化:使用RPA(机器人流程自动化)减少人为操作,提高效率。2.提高物流效率智能调度:使用AI优化配送路线,减少运输时间和成本。自动化仓储:采用自动分拣、机器人搬运、无人机配送
- Ubuntu22.04安装CP2K最新版2025.1
jhonwyyc
机器学习深度学习ubuntu
CP2K教程CP2K系列之一安装文章目录CP2K教程前言一、安装依赖库1.引入库二、下载并解压缩1.下载链接2.解压缩三、安装1.安装cp2k_toolchain2.安装cp2k3.指定根目录4.修改环境变量四、测试总结前言CP2K是一款开源的第一性原理计算软件,采用Fortran98编写。近年来结合机器学习与lammps,已成为热度逐年增加的软件。但是目前使用它仍存在不少难点。本文讲解在Ubun
- Azure AI Document Intelligence 使用指南
scaFHIO
azure人工智能flaskpython
AzureAIDocumentIntelligence使用指南AzureAIDocumentIntelligence(原名AzureFormRecognizer)是一项基于机器学习的服务,可以从数字或扫描PDF、图像、Office和HTML文件中提取文本(包括手写)、表格、文档结构(如标题、节标题等)和键值对。它支持多种格式,包括PDF、JPEG/JPG、PNG、BMP、TIFF、HEIF、DOC
- 鸢尾花数据集的四个特征具体是什么?
学术乙方
Python人工智能
鸢尾花数据集(IrisDataset)是机器学习领域中最经典的数据集之一,它包含150个样本,每个样本有4个特征,分别是:1.花萼长度(SepalLength)描述:花萼(花的外部绿色部分)的长度,单位为厘米。取值范围:通常为4.3cm到7.9cm。2.花萼宽度(SepalWidth)描述:花萼的宽度,单位为厘米。取值范围:通常为2.0cm到4.4cm。3.花瓣长度(PetalLength)描述:
- OLAP与OLTP:数据处理系统的两种核心架构
思静鱼
#Mysql-数据库架构
文章目录OLAP和OLTP的主要区别OLAP常见数据库和OLTP常见数据库OLAP是英文OnlineAnalyticalProcessing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。OLAP技术通常涉及到预计算、缓存和查询优化等方面的技术,可用于构建在线分析系统(OLAP系统)。该系统将大量的
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。