python 机器学习笔记——Sklearn使用

python 机器学习笔记——Sklearn使用

  • 前言
    • sklearn官方文档的内容和结构
    • 获取数据
    • 数据预处理
    • 数据集拆分
    • 定义模型
    • 模型评估与选择
    • 保存模型
    • 模型评分

前言

sklearn的学习教程官方文档地址:https://scikit-learn.org/stable/

scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。还包括了特征提取,数据处理和模型评估者三大模块。

sklearn是Scipy的扩展,建立在Numpy和matplolib库的基础上。利用这几大模块的优势,可以大大的提高机器学习的效率。

sklearn官方文档的内容和结构

sklearn官方文档的内容
python 机器学习笔记——Sklearn使用_第1张图片
sklearn官方文档结构
python 机器学习笔记——Sklearn使用_第2张图片
由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。其中:

常用的回归:线性、决策树、SVM、KNN ;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
常用聚类:k均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN
常用降维:LinearDiscriminantAnalysis、PCA
  这个流程图代表:蓝色圆圈是判断条件,绿色方框是可以选择的算法,我们可以根据自己的数据特征和任务目标去找一条自己的操作路线。

python 机器学习笔记——Sklearn使用_第3张图片
模块preprocessing:几乎包含数据预处理的所有内容
模块Impute:填补缺失值专用
模块feature_selection:包含特征选择的各种方法的实践
模块decomposition:包含降维算法

获取数据

  • 导入sklearn数据集
    sklearn中包含了大量的优质的数据集,在我们学习机器学习的过程中,我们可以使用这些数据集实现出不同的模型。除了引入数据之外,我们还可以通过load_sample_images()来引入图片。
    首先,要使用sklearn中的数据集,必须导入datasets模块。
from sklearn import datasets

下面两个图中包含了大部分sklearn中的数据集,调用方式也图中给出
python 机器学习笔记——Sklearn使用_第4张图片
python 机器学习笔记——Sklearn使用_第5张图片
这里我们使用iris的数据来举个例子,表示导出数据集:

iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label

数据预处理

数据预处理阶段是机器学习中不可缺少的一环,它会使得数据更加有效的被模型或者评估器识别。下面我们来看一下sklearn中有哪些平时我们常用的函数:

from sklearn import preprocessing

为了使得训练数据的标准化规则与测试数据的标准化规则同步,preprocessing中提供了很多的Scaler:

  • StandardScaler
  • MaxAbsScaler
  • MinMaxScaler
  • RobustScaler
  • Normalizer
  • 等其他预处理操作

对应的有直接的函数使用:scale(),maxabs_scale(),minmax_scale(),robust_scale(),normaizer()

sklearn.preprocessing.scale(X)
  1. 数据标准化
    标准化:在机器学习中,我们可能要处理不同种类的资料,例如,音讯和图片上的像素值,这些资料可能是高纬度的,资料标准化后会使得每个特征中的数值平均变为0(将每个特征的值都减掉原始资料中该特征的平均),标准差变为1,这个方法被广泛的使用在许多机器学习算法中(例如:支持向量机,逻辑回归和类神经网络)。

StandardScaler计算训练集的平均值和标准差,以便测试数据及使用相同的变换。

变换后各维特征有0均值,单位方差,也叫z-score规范化(零均值规范化),计算方式是将特征值减去均值,除以标准差。

fit
  用于计算训练数据的均值和方差,后面就会用均值和方差来转换训练数据

fit_transform
  不仅计算训练数据的均值和方差,还会基于计算出来的均值和方差来转换训练数据,从而把数据转化成标准的正态分布。

transform
  很显然,它只是进行转换,只是把训练数据转换成标准的正态分布。(一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以使用scaler)
  
一般来说先使用fit:

scaler = preocessing.StandardScaler().fit(X)

这一步可以计算得到scaler,scaler里面存的有计算出来的均值和方差。
再使用transform

scaler.transform(X)

这一步再用scaler中的均值和方差来转换X,使X标准化。

最后,在预测的时候,也要对数据做同样的标准化处理,即也要用上面的scaler中的均值和方差来对预测时候的特征进行标准化。

注意:测试数据和预测数据的标准化的方式要和训练数据标准化的方式一样,必须使用同一个scaler来进行transform

  1. 最小-最大规范化
    最小最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)。
# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来
  1. 正则化(normalize)
    当你想要计算两个样本的相似度时必不可少的一个操作,就是正则化。其思想是:首先求出样本的p范数,然后该样本的所有元素都要除以该范数,这样最终使得每个样本的范数都是1。*规范化(Normalization)*是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],也成为归一化。

如下例子,将每个样本变换成unit norm。

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
 
>>> X_normalized                                     
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

我们可以发现对于每一个样本都有0.4^2+0.4 。这就是L2 norm,变换后每个样本的各维特征的平方和为1.类似的,L1 norm则是变换后每个样本的各维特征的绝对值之和为1.还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值,

在度量样本之间相似性时,如果使用的是二次型kernel,则需要Normalization

  1. one-hot编码
    ne-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。
data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()
  1. 特征二值化(Binarization)
    给定阈值,将特征转换为0/1.
binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)
 
binarizer.transform(X)

数据集拆分

在得到训练数据集时,通常我们经常会把训练数据进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和testdata,形式为:

X_train,X_test, y_train, y_test =
 
cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)

参数解释
train_data:所要划分的样本特征集
train_target:所要划分的样本结果
test_size:样本占比,如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。
参数说明

示例

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签
 
test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本
 
train_size: 同test_size
 
random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)
 
返回
---
分割后的列表,长度=2*len(arrays),
  (train-test split)
"""
  

拆分参数遇到的问题及其解决方法
  导入模块

from sklearn.cross_validation import cross_val_score

则会报错,代码如下:

    from sklearn.cross_validation import cross_val_score
ModuleNotFoundError: No module named 'sklearn.cross_validation'

解决方法:

from sklearn.model_selection import cross_val_score

定义模型

在这一步我们首先要分析自己数据的类型,明白自己要用什么模型来做,然后我们就可以在sklearn中定义模型了,sklearn为所有模型提供了非常相似的接口,这样使得我们可以更加快速的熟悉所有模型的用法,在这之前,我们先来看看模型的常用属性和功能。

# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)
 
# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

4.1 线性回归
在这里插入图片描述

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
    copy_X=True, n_jobs=1)
 
"""
参数
---
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,
则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
     n_jobs:指定线程数
"""

4.2 逻辑回归LR

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0,
    fit_intercept=True, intercept_scaling=1, class_weight=None,
    random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’,
    verbose=0, warm_start=False, n_jobs=1)
 
"""参数
---
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量
"""
  

4.3 朴素贝叶斯算法NB(Naive Bayes)

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

4.4 决策树DT

from sklearn import tree
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
    max_features=None, random_state=None, max_leaf_nodes=None,
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
---
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数
    min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""
  

4.5 支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""

4.6 k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数
"""
  

4.7 多层感知器(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数。
"""

模型评估与选择

评价指标针对不同的机器学习任务有不同的指标,同一任务也有不同侧重点的评价指标。以下方法,sklearn中都在sklearn.metrics类下,务必记住那些指标适合分类,那些适合回归。

  1. 交叉验证

交叉验证cross_val_score的scoring参数

分类:accuracy(准确率)、f1、f1_micro、f1_macro(这两个用于多分类的f1_score)、precision(精确度)、recall(召回率)、roc_auc
回归:neg_mean_squared_error(MSE、均方误差)、r2
聚类:adjusted_rand_score、completeness_score等

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
    model:拟合数据的模型
    cv : k-fold
    scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""

留出法(holdout cross validation)

在机器学习任务中,拿到数据后,我们首先会将原始数据集分为三部分:训练集,验证集和测试集。

训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力。

这个方法操作简单,只需要随机将原始数据分为三组即可。
 python 机器学习笔记——Sklearn使用_第6张图片

不过如果只做一次分割,它对训练集,验证集和测试机的样本比例,还有分割后数据的分布是否和原始数据集的分布相同等因素比较敏感,不同的划分会得到不同的最优模型,,而且分成三个集合后,用于训练的数据更少了。于是又了2.k折交叉验证(k-fold cross validation).

下面例子,一共有150条数据:

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm
 
>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

用train_test_split来随机划分数据集,其中40%用于测试集,有60条数据,60%为训练集,有90条数据:

>>> X_train, X_test, y_train, y_test = train_test_split(
...     iris.data, iris.target, test_size=0.4, random_state=0)
 
>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

用train来训练,用test来评价模型的分数。

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)                          
0.96...
  1. k 折交叉验证(k-fold cross validation)
    python 机器学习笔记——Sklearn使用_第7张图片
      K折交叉验证通过对k个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感。

第一步,不重复抽样将原始数据随机分为 k 份。
第二步,每一次挑选其中 1 份作为测试集,剩余 k-1 份作为训练集用于模型训练。
第三步,重复第二步 k 次,这样每个子集都有一次机会作为测试集,其余机会作为训练集。
在每个训练集上训练后得到一个模型,
用这个模型在相应的测试集上测试,计算并保存模型的评估指标,
第四步,计算 k 组测试结果的平均值作为模型精度的估计,并作为当前 k 折交叉验证下模型的性能指标。
K一般取10,数据量小的是,k可以设大一点,这样训练集占整体比例就比较大,不过同时训练的模型个数也增多。数据量大的时候,k可以设置小一点。当k=m的时候,即样本总数,出现了留一法。

举例,这里直接调用了cross_val_score,这里用了5折交叉验证

>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_val_score(clf, iris.data, iris.target, cv=5)
>>> scores                                             
array([ 0.96...,  1.  ...,  0.96...,  0.96...,  1.        ])

得到最后平均分数为0.98,以及它的95%置信区间:

>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.98 (+/- 0.03)

我们可以直接看一下K-Fold是怎么样划分数据的:X有四个数据,把它分成2折,结构中最后一个集合是测试集,前面的是训练集,每一行为1折:

>>> import numpy as np
>>> from sklearn.model_selection import KFold
 
>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
...     print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

同样的数据X,我们来看LeaveOneOut后是什么样子,那就是把它分成4折,结果中最后一个集合是测试集,只有一个元素,前面的是训练集,每一行为1折:

>>> from sklearn.model_selection import LeaveOneOut
 
>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
...     print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
  1. 检验曲线

使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
    model:用于fit和predict的对象
    X, y: 训练集的特征和标签
    param_name:将被改变的参数的名字
    param_range: 参数的改变范围
    cv:k-fold
    
返回值
---
   train_score: 训练集得分(array)
    test_score: 验证集得分(array)
"""
  1. 分类模型

accuracy_score(准确率得分)是模型分类正确的数据除以样本总数 【模型的score方法算的也是准确率】

accuracy_score(y_test,y_pre)
# 或者 model.score(x_test,y_test),大多模型都是有score方法的
  

classification_report中的各项得分的avg/total 是每一分类占总数的比例加权算出来的

print(classification_report(y_test,y_log_pre))
 
             precision    recall  f1-score   support
 
          0       0.87      0.94      0.90       105
          1       0.91      0.79      0.85        73
 
avg / total       0.88      0.88      0.88       178
  

confusion_matrix(混淆矩阵),用来评估分类的准确性

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])
  

precision_score(精确度)、recall_score(召回率)、f1_score(后者由前两个推导出的)

这三个不仅适合二分类,也适合多分类。只需要指出参数average=‘micro’/‘macro’/'weighted’
 
    macro:计算二分类metrics的均值,为每个类给出相同权重的分值。
当小类很重要时会出问题,因为该macro-averging方法是对性能的平均。
另一方面,该方法假设所有分类都是一样重要的,因此macro-averaging
方法会对小类的性能影响很大
 
    micro: 给出了每个样本类以及它对整个metrics的贡献的pair(sample-
weight),而非对整个类的metrics求和,它会每个类的metrics上的权重及
因子进行求和,来计算整个份额。Micro-averaging方法在多标签(multilabel)
问题中设置,包含多分类,此时,大类将被忽略
 
    weighted: 对于不均衡数量的类来说,计算二分类metrics的平均,
通过在每个类的score上进行加权实现

roc_curve(ROC曲线,用于二分类)

保存模型

后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

1 保存为pickle文件

import pickle
 
# 保存模型
with open('model.pickle', 'wb') as f:
    pickle.dump(model, f)
 
# 读取模型
with open('model.pickle', 'rb') as f:
    model = pickle.load(f)
model.predict(X_test)

2 sklearn自带方法joblib

from sklearn.externals import joblib
 
# 保存模型
joblib.dump(model, 'model.pickle')
 
#载入模型
model = joblib.load('model.pickle')

模型评分

1,模型的score方法:最简单的模型评估方法就是调用模型自己的方法:

# 预测
y_predict = knnClf.predict(x_test)
print("score on the testdata:",knnClf.score(x_test,y_test))
  2,sklearn的指标函数:库提供的一些计算方法,常用的有classification_report方法

  3,sklearn也支持自己开发评价方法。

你可能感兴趣的:(python 机器学习笔记——Sklearn使用)