resnet50代码前向对齐

主要思路:先导入预训练模型,然后导出权重参数和npy输出,然后再将torch的代码对应的改写成paddle的代码,导入权重参数,输出npy文件,最后对比着两个npy文件即可
完整项目链接

1.安装pycharm

破解版的,直接安装就好

2.安装anconda

安装链接

3.安装paddlepaddle和torch

conda create -n resnet50 python=3.7
conda activate resnet50
conda install paddlepaddle --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
pip install torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torchvision

效果图:
在这里插入图片描述

4.resnet50_torch.py代码讲解

在这里插入图片描述
先导入预训练模型,然后开启预测模式(为了后面导出权重做准备)
resnet50代码前向对齐_第1张图片
先定义了一个空列表,然后通过named_modules函数(获取网络结构)遍历所有的层,如果是线性层的话就会添加到这个列表中(在resnet中只有最后一层fc层是线性层,所以这段代码的意思就是先把resnet网络中的最后一层提取出来)

named_modules()函数和named_children( ):
从定义上讲:

named_children( ):返回包含子模块的迭代器,同时产生模块的名称以及模块本身。
named_modules( ):返回网络中所有模块的迭代器,同时产生模块的名称以及模块本身。

测试一下:

import torch
import torch.nn as nn
 
class TestModule(nn.Module):
    def __init__(self):
        super(TestModule,self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(16,32,3,1),
            nn.ReLU(inplace=True)
        )
        self.layer2 = nn.Sequential(
            nn.Linear(32,10)
        )
 
    def forward(self,x):
        x = self.layer1(x)
        x = self.layer2(x)
 
model = TestModule()
 
for name, module in model.named_children():
    print('children module:', name)
 
for name, module in model.named_modules():
    print('modules:', name)
>>out:
children module: layer1
children module: layer2
modules: 
modules: layer1
modules: layer1.0
modules: layer1.1
modules: layer2
modules: layer2.0

可以看到named_children只输出了layer1和layer2两个子module,而named_modules输出了包括layer1和layer2下面所有的modolue。
所以可以利用named_modules()函数将网络结构打印出来,博主将结构打印到txt文件中以便查阅。resnet50代码前向对齐_第2张图片
函数isinstance()可以判断一个变量的类型,既可以用在Python内置的数据类型如str、list、dict,也可以用在我们自定义的类,它们本质上都是数据类型。
在这里插入图片描述

model.state_dict():
这个函数是可以去获得模型的状态字典,这个字典是在定义后模型后自动生成的。
convert_param_dict(model_dict, trans_weights):
该函数是将torch中的状态字典转为paddle中的状态字典。

保存参数字典
resnet50代码前向对齐_第3张图片
保存输出
resnet50代码前向对齐_第4张图片
最后得到torch_resnet50.pkl和torch_resnet50.npy两个文件
至此就得到torch环境下的运行结果和paddle环境下的权重文件了,接下来就是要把torch的代码对应成paddle代码。

5.代码对齐

打开这个网站,使用浏览器的查找功能,对torch的API进行逐个比对
效果展示:

import paddle
import paddle.nn as nn

import pickle
import numpy as np


def conv3x3(in_planes, out_planes, stride = 1, groups = 1, dilation = 1):
    """3x3 convolution with padding"""
    return nn.Conv2D(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, dilation=dilation)


def conv1x1(in_planes, out_planes, stride = 1):
    """1x1 convolution"""
    return nn.Conv2D(in_planes, out_planes, kernel_size=1, stride=stride)


class BasicBlock(nn.Layer):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")

        self.conv1 = nn.Conv2D(
            inplanes, planes, 3, padding=1, stride=stride, bias_attr=False)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class BottleneckBlock(nn.Layer):

    expansion = 4
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BottleneckBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        width = int(planes * (base_width / 64.)) * groups

        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class ResNet(nn.Layer):
    def __init__(
        self,
        block,
        layers,
        num_classes = 1000,
        zero_init_residual = False,
        groups = 1,
        width_per_group = 64,
        replace_stride_with_dilation = None,
        norm_layer = None
    ):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group

        self.conv1 = nn.Conv2D(3, self.inplanes, kernel_size=7, stride=2, padding=3)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks,
                    stride = 1, dilate = False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def _forward_impl(self, x):
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = paddle.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x):
        return self._forward_impl(x)


def _resnet(arch, block, layers,**kwargs):
    model = ResNet(block, layers,**kwargs)
    return model

def resnet50(**kwargs):
    return _resnet('resnet50', BottleneckBlock, [3, 4, 6, 3])

if __name__ == "__main__":
    dummy_input = [paddle.ones(shape=[3, 224, 224])]
    model = resnet50()

    with open('torch_resnet50.pkl', 'rb') as f:
        param2 = pickle.load(f)
    model.set_state_dict(param2)
    model.eval()

    output = model(paddle.to_tensor(dummy_input))
    np.save('paddle_resnet50.npy', output.numpy())

最后运行返回Ture即为成功


import numpy as np

paddle_output=np.load('paddle_resnet50.npy')
torch_output=np.load('torch_resnet50.npy')
print(np.allclose(paddle_output,  torch_output, atol=1e-5))

你可能感兴趣的:(FCN论文复现,深度学习,人工智能,图像分类)