- 鸿蒙Next开发与未来发展的变革:全场景操作系统的全新纪元
北辰alk
鸿蒙harmonyos华为
文章目录引言:从兼容到自主的跨越式进化一、鸿蒙Next技术架构解析1.1系统架构全景图1.1.1微内核架构优势1.2与OpenHarmony的关系二、开发范式革命2.1应用开发模式对比2.1.1元服务(MetaService)定义2.2开发工具链升级(DevEcoStudio4.0)2.2.1核心功能增强2.2.2工程结构变革三、关键技术突破3.1方舟编译器深度优化3.2分布式能力增强3.2.1设
- 【linux】【进程】进程间通信(IPC)方式 效率排序
钟离墨笺
Linuxlinux服务器java
【linux】【进程】进程间通信(IPC)方式效率排序(自己理解)按照效率从高到低排序:共享内存>信号>管道>消息队列>套接字1.共享内存(最高效)现代操作系统,对于内存管理,采用的是虚拟内存技术,也就是每个进程都有自己独立的虚拟内存空间不同进程的虚拟内存映射到不同的物理内存中。所以,即使进程A和进程B的虚拟地址是一样的,其实访问的是不同的物理内存地址,对于数据的增删查改互不影响。共享内存的机制,
- RabbitMQ应用问题大全(精心整理版)
ngioig
RabbitMQmicrosoftspringrabbitmq分布式
前言其实这部分知识我是整理在语雀上了,这里是直接复制粘贴过来的。不是很好阅读,可以直接点下方链接去语雀看,那个看的会舒服很多。https://www.yuque.com/g/ngioig/upbg6b/fkarhyo8fpgrtyq8/collaborator/join?token=GvlO0di8KaIfO8aF&source=doc_collaborator#《RabbitMQ常见问题知识库》
- GraphQL 联邦架构:构建可扩展的分布式 API 生态系统
全栈探索者chen
知识分享graphql架构分布式开发语言缓存后端性能优化
GraphQL联邦架构:构建可扩展的分布式API生态系统前言随着微服务架构在企业级应用中的广泛应用,各个服务需要独立演进与部署,API层的设计逐渐成为开发者面临的重要挑战。GraphQL作为一种灵活的数据查询语言,已经在许多项目中取代了传统RESTfulAPI。然而,当业务不断增长、服务拆分越来越细粒度时,单一GraphQL服务往往难以满足扩展性和独立部署的需求。为了解决这一问题,GraphQL联
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- 实现RPC框架的流量控制与限流策略
AI天才研究院
计算编程实践架构师必知必会系列计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍实现RPC框架的流量控制与限流策略作者:禅与计算机程序设计艺术1.背景介绍1.1RPC简介RPC(RemoteProcedureCall),即远程过程调用,是一种常见的分布式系统中的通信方式。它允许程序员像调用本地函数一样去调用网络上位于其他机器上的函数。RPC通过将参数序列化为消息,然后发送到服务器上执行相应的函数,最后将结果反序列化返回给客户端。1.2流量控制与限流策略在分布式系统
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 【后端开发面试题】每日 3 题(十五)
Pandaconda 的测开之路
#后端开发面试专栏面试后端后端开发分布式数据库幂等性python
✍个人博客:Pandaconda-CSDN博客专栏地址:https://blog.csdn.net/newin2020/category_12903849.html专栏简介:在这个专栏中,我将会分享后端开发面试中常见的面试题给大家,每天的题目都是独立且随机的,之前的面试题不会影响接下来的学习~❤️如果有收获的话,欢迎点赞收藏,您的支持就是我创作的最大动力题目1:什么是分布式锁?它的使用场景是什么?
- HarmonyOS Next深度解析:从技术架构到实践应用
披光人
harmonyOSharmonyos架构华为
HarmonyOSNext作为华为最新一代的分布式操作系统,不仅在技术架构上进行了全面的革新,还在实际应用场景中展现了强大的潜力。对于有一定开发基础的开发者来说,深入理解HarmonyOSNext的技术细节和实际应用方法,是掌握鸿蒙开发的关键。本文将从技术架构、最新技术分析以及开发实践三个方面,详细解析HarmonyOSNext的核心技术和应用场景,帮助开发者快速上手并高效开发。一、Harmony
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- Java集成MQTT和Kafka实现稳定、可靠、高性能的物联网消息处理系统
qzw1210
javakafka物联网
Java集成MQTT和Kafka实现高可用方案1.概述在物联网(IoT)和分布式系统中,消息传递的可靠性和高可用性至关重要。本文将详细介绍如何使用Java集成MQTT和Kafka来构建一个高可用的消息处理系统。MQTT(消息队列遥测传输)是一种轻量级的发布/订阅协议,适用于资源受限的设备和低带宽、高延迟网络。而Kafka是一个分布式流处理平台,提供高吞吐量、可扩展性和持久性。将两者结合,可以创建一
- Java 分布式高并发重试方案及实现
可乐加.糖
java分布式开发语言springbootredis
文章目录Java分布式高并发重试方案及实现一、重试机制的背景和意义二、基于SpringBoot的重试方案实现1.使用SpringRetry实现重试机制添加依赖开启重试功能定义重试逻辑使用重试服务2.使用Fast-Retry实现高性能重试引入依赖编程式重试注解式重试三、重试机制的注意事项四、总结Java分布式高并发重试方案及实现在分布式系统中,高并发场景下接口调用的稳定性至关重要。为了应对接口调用失
- 《论分布式系统架构设计及其应用》架构师论文
文琪小站
系统架构师系统架构设计师软考论文
【摘要】2022年3月,我参与了某金融科技公司“智能风控云平台”项目的研发工作,担任系统架构师职务,负责分布式系统架构设计与核心技术选型。该平台旨在为银行、保险等金融机构提供实时风险评估、反欺诈及数据服务,需支撑每秒十万级并发请求并满足毫秒级响应要求。项目采用微服务架构风格,融合事件驱动、服务网格及分布式数据存储技术,解决了高可用性、弹性扩展及数据一致性等核心问题。本文通过实际案例论证分布式架构设
- token升级(考虑在分布式环境中布置token,结合session保证请求调用过程中token不会过期。)
推荐爱你Jonah
分布式redisjava
思路:首先,用户的需求是确保使用同一个Token的外部调用都在一个Session中处理。之前的回答提到了Token与Session绑定、安全措施、Session管理、分布式处理等。现在需要用Java来展示这些步骤。我需要考虑Java中常用的框架,比如SpringBoot,因为它广泛用于API开发。同时,使用Redis作为Session存储,这在Java中通常通过SpringDataRedis或Le
- 技术解析麦萌短剧《阴阳无极》:从「性别偏见下的对抗训练」到「分布式江湖的架构重构」
短剧萌
分布式架构重构
《阴阳无极》以陈千叶的武道觉醒为线索,展现了传统系统的路径依赖困境与对抗性策略的范式突破。本文将从算法博弈视角拆解这场武侠革命的底层逻辑,探讨如何在性别偏见的数据集中完成模型的自我进化。1.初始模型偏差:继承权剥夺与梯度冻结陈千叶(Agent_C)的成长可视为有偏数据集上的训练:特征歧视:太极门继承规则(Legacy_Rule)作为传统分类器,强行将性别(Gender_Feature)设为负权重参
- 麦萌短剧技术解构《我跑江湖那些年》:从“仇恨驱动型算法”到“多方安全计算的自我救赎”
短剧萌
算法安全
《我跑江湖那些年》以慕青青的复仇与蜕变为主线,展现了分布式系统中的信任崩塌与对抗性博弈的模型优化。本文将从机器学习视角拆解这场“江湖算法”的技术隐喻,探讨如何在数据污染的困境中实现参数净化。1.初始训练集:暴力采样与特征空间坍缩慕青青(Agent_M)的成长环境可视为一个高偏差训练集:数据污染事件:村主任(Node_V)通过恶意共识算法(如嫉妒驱动的PoW机制),煽动村民(Sub_Nodes)对果
- 麦萌:《我们曾经有过家》深度解析 | 被至亲背刺后,首富如何用“系统性重构”逆风翻盘?
短剧萌
重构
剧情全解析:从“隐忍架构”到“复仇算法”的史诗级崩盘与逆袭1.系统初始化:首富的“降权模式”安城首富高志强为守护妻子李梦露的“平凡人生”,主动剥离财富与地位,化身能源厂普通职员。这一行为如同将分布式系统的核心节点降级为边缘服务——他默默为妻子铺路,助其从基层员工晋升至副厂长,甚至计划将能源厂最高控制权(厂长职位)移交给她。2.致命漏洞:情感协议的全面违约在权力交接的关键时刻(相当于系统升级前夜),
- Flink 初体验:从 Hello World 到实时数据流处理
小诸葛IT课堂
flink大数据
在大数据处理领域,ApacheFlink以其卓越的流批一体化处理能力脱颖而出,成为众多企业构建实时数据应用的首选框架。本文将带领你迈出Flink学习的第一步,从基础概念入手,逐步引导你编写并运行第一个Flink程序——经典的WordCount,让你亲身感受Flink在实时数据流处理方面的强大魅力。一、Flink基础概念速览1.1什么是FlinkFlink是一个分布式流批一体化开源平台,旨在对无界和
- Git 使用指南
tonngw
git
Git是一种分布式版本控制系统,可以追踪文件的变化并协助多人协作开发项目。下面是Git的基本概念和使用方式:仓库(Repository):Git用来存储项目的地方,可以理解为项目的文件夹,包含项目的所有文件和历史记录。提交(Commit):提交是指保存项目当前状态的操作,每次提交都会记录文件的变化,包括新增、修改和删除。分支(Branch):分支是在仓库中独立存在的工作线,可以用来开发新功能、修复
- RPC远程调用框架Dubbo
Czi橙
rpcdubbo网络协议javanacosspringcloud微服务
一、分布式服务调用_什么是RPCRPC(RemoteProcedureCall)远程过程调用,它是一种通过网络从远程计算机程序上请求服务。大白话理解就是:RPC让你用别人家的东西就像自己家的一样。RPC两个作用:屏蔽远程调用跟本地调用的区别,让我们感觉就是调用项目内的方法隐藏底层网络通信的复杂性,让我们更加专注业务逻辑。常用的RPC框架RPC是一种技术思想而非一种规范或协议。常见RPC技术和框架:
- 服务远程调用(RPC)架构及原理
小小工匠
【SimpleRPC】rpc架构网络协议
文章目录引言一、RPC架构与核心组件二、RPC调用流程解析三、关键技术实现1.网络通信协议2.序列化与反序列化四、RPC框架核心特性引言SimpleRPC在分布式系统中,服务远程调用(RPC)是系统解耦与可扩展性的核心技术。它通过屏蔽底层通信细节,让开发者像调用本地函数一样使用远程服务。接下来我们将深入解析RPC的核心架构、通信流程及关键特性。一、RPC架构与核心组件RPC架构分为五个核心模块,各
- linux下消息队列详解
zy20150613
linuxlinux消息队列
消息队列提供了从一个进程向另外一个进程发送一块数据的方法,每个数据块认为有一个类型(通俗说法是一个通道),但是接受通道与发送通道必须一致才能实现通信。消息队列的不足之处在于每个消息最大长度有限度,每个消息队列总字节数有限制,系统的消息队列有限制。命令:cat/proc/sys/kernel/msgmax:查看一条信息最大有多大cat/proc/sys/kernel/msgmnb:查看消息队列中信息
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- Go语言 vs Java语言:核心差异与适用场景解析
By北阳
golangjava开发语言
在当今的软件开发领域,Go(Golang)和Java都是备受关注的后端开发语言。尽管二者都能构建高性能服务,但它们在设计哲学、语法特性和应用场景上存在显著差异。本文将从多个维度对比这两种语言,帮助开发者更好地理解它们的优缺点,并为技术选型提供参考。一、设计哲学与语言定位1.Go语言定位:专为高并发、分布式系统设计,强调简洁性和高效性。特点:语法简单,学习曲线平缓。静态编译为单一二进制文件,部署便捷
- 关于PLC、电缆线材及气缸选型的详细教程
自动化专业爱好者
网络
以下是关于PLC、电缆线材及气缸选型的详细教程,整合了多个专业来源的核心要点:一、PLC选型要点生产厂家选择日系PLC(如三菱FX系列、欧姆龙CP1系列)适合独立设备或简单控制系统,性价比高。欧美系PLC(如西门子S7-1200/1500系列)适用于大型分布式系统或需复杂通信的场景(如工业以太网)。特殊行业(如冶金、烟草)需选择有行业成熟案例的PLC品牌。I/O点数估算统计所有输入/输出信号(如传
- 性能测试自动化:JMeter脚本设计与分布式压测实战指南
测试渣
自动化jmeter分布式测试工具
引言在数字化竞争日益激烈的今天,软件系统的性能表现直接影响用户体验和业务连续性。无论是电商大促的“秒杀”场景,还是金融系统的高频交易,性能测试自动化已成为保障系统稳定性的核心手段。ApacheJMeter作为开源性能测试工具中的标杆,凭借其灵活性和扩展性,成为企业构建自动化测试体系的首选工具。本文将从脚本设计与分布式压测两大核心维度,系统阐述JMeter在性能测试自动化中的实践方法,为企业提供可落
- 队列在计算机系统中的应用
AredRabbit
队列
队列在计算机系统中有广泛的应用,主要用于管理任务和处理数据流。以下是队列的一些常见应用场景:1.任务调度操作系统:操作系统使用队列管理进程调度,如先来先服务(FCFS)调度算法。线程池:线程池通过队列管理待执行任务,确保任务按顺序处理。2.数据缓冲I/O操作:队列用于缓冲输入输出数据,平衡生产者和消费者速度。网络通信:网络数据包通过队列缓冲,确保按顺序处理。3.消息传递消息队列:在分布式系统中,消
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- Hystrix 实现限流\降级\熔断
杏花春雨江南
java开发那些事儿hystrixjava开发语言
Hystrix是一个强大的库,用于处理分布式系统中的延迟和容错问题。它提供了限流、降级和熔断等功能。下面是一个完整的Java示例,展示如何使用Hystrix实现限流、降级和熔断。1.添加依赖在pom.xml中添加Hystrix的依赖:xml复制com.netflix.hystrixhystrix-core1.5.18运行HTML2.创建Hystrix命令创建一个继承自HystrixCommand的
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,