OpenCV 学习笔记(颜色直方图计算 calcHist)

OpenCV 学习笔记(颜色直方图计算 calcHist)

最近在看一本OpenCV 的书,书名是 《OpenCV 3 Computer Vision Application Programming Cookbook (third edition)》,里面给了很多很实用的代码片段。最近这几篇学习笔记都是从这个书里摘出的代码。有些代码我又做了些小的修改。

直方图计算是个很常见的需求,OpenCV 当然也提供了相应的函数。不过OpenCV 里的函数搞的有点复杂。函数原型如下:

void calcHist( InputArrayOfArrays images,
                            const std::vector& channels,
                            InputArray mask, OutputArray hist,
                            const std::vector& histSize,
                            const std::vector& ranges,
                            bool accumulate = false );

这个 calcHist 可以同时计算许多个图像的直方图,也支持多个通道图像。通常我们用不到这么复杂的功能。所以可以再进一步封装一下。下面是封装后的代码:

#ifndef HISTOGRAM_H
#define HISTOGRAM_H


#include 
#include 


class Histogram1D
{
public:
    Histogram1D()
    {
        // Prepare arguments for 1D histogram
        histSize[0] = 256;
        hranges[0] = 0.0;
        hranges[1] = 256.0;
        ranges[0] = hranges;
        channels[0] = 0; // by default, we look at channel 0
    }
    ~Histogram1D();
    // Computes the 1D histogram and returns an image of it.
    cv::Mat getHistogramImage(const cv::Mat &image);
    // Computes the 1D histogram.
    cv::MatND getHistogram(const cv::Mat &image);

    /**
     * @brief stretch 拉伸图像的灰度直方图以增强图像的对比度
     * @param image 输入图像,必须是8 bits 灰度图像
     * @param percent 直方图两侧各舍弃百分之 percent 的点,将剩下的拉伸到 0 - 255
     * @return 返回一个新的图像
     */
    cv::Mat stretch(const cv::Mat &image, double percent);
    cv::Mat stretch(const cv::Mat &image, double percent1, double percent2);
    //直方图正规化,将图像图像最亮的地方线性拉伸到 255,最暗的地方线性拉伸到 0
    cv::Mat normalize(const cv::Mat &image);
private:
    int histSize[1]; // number of bins
    float hranges[2]; // min and max pixel value
    const float* ranges[1];
    int channels[1]; // only 1 channel used here

};

class ColorHistogram
{
public:
    ColorHistogram()
    {
        // Prepare arguments for a color histogram
        histSize[0] = histSize[1] = histSize[2] = 256;
        hranges[0] = 0.0; // BRG range
        hranges[1] = 256.0;
        ranges[0] = hranges; // all channels have the same range
        ranges[1] = hranges;
        ranges[2] = hranges;
        channels[0] = 0; // the three channels
        channels[1] = 1;
        channels[2] = 2;
    }
    cv::MatND getHistogram(const cv::Mat &image) ;
    cv::SparseMat getSparseHistogram(const cv::Mat &image) ;
private:
    int histSize[3];
    float hranges[2];
    const float* ranges[3];
    int channels[3];
};

#endif // HISTOGRAM_H

#include "histogram.h"
#include 
#include 

Histogram1D::~Histogram1D()
{

}

// Computes the 1D histogram.
cv::MatND Histogram1D::getHistogram(const cv::Mat &image)
{
    cv::MatND hist;
    // Compute histogram
    cv::calcHist(&image,
        1, // histogram from 1 image only
        channels, // the channel used
        cv::Mat(), // no mask is used
        hist, // the resulting histogram
        1, // it is a 1D histogram
        histSize, // number of bins
        ranges // pixel value range
    );
    return hist;
}

cv::Mat Histogram1D::stretch(const cv::Mat &image, double percent)
{
    return stretch(image, percent, percent);
}

cv::Mat Histogram1D::stretch(const cv::Mat &image, double percent1, double percent2)
{

    cv::MatND hist = getHistogram(image);
    int imin, imax;
    if(percent1 < 0.0) percent1 = 0.0;
    if(percent1 > 1.0) percent1 = 1.0;
    percent1 = image.rows * image.cols * percent1;
    double value = 0;
    for(imin = 0; imin < histSize[0]; imin++)
    {
        value += hist.at(imin);
        if(value > percent1) break;
    }

    value = 0;
    if(percent2 < 0.0) percent2 = 0.0;
    if(percent2 > 1.0) percent2 = 1.0;
    percent2 = image.rows * image.cols * percent2;
    for(imax = histSize[0] - 1; imax >= 0; imax--)
    {
        value += hist.at(imax);
        if(value > percent2) break;
    }
    //int dim = 256;
    cv::Mat lookup(1, 256, CV_8U);

    for(int i = 0; i < 256; i++)
    {
        if(i < imin) lookup.at(i) = 0;
        else if(i > imax) lookup.at(i) = 255;
        else
        {
            double v = 255.0 * (i - imin) / (imax - imin);
            lookup.at(i) = static_cast(v);
        }
    }
    cv::Mat ret;
    cv::LUT(image, lookup, ret);
    return ret;
}

cv::Mat Histogram1D::normalize(const cv::Mat &image)
{
    // Compute histogram first
    cv::MatND hist = getHistogram(image);
    int imin, imax;
    for(imin = 0; imin < histSize[0]; imin++)
    {
        if(hist.at(imin) > 0) break;
    }

    for(imax = histSize[0] - 1; imax >= 0; imax--)
    {
        if(hist.at(imax) > 0) break;
    }

    cv::Mat lookup(1, 256, CV_8U);

    for(int i = 0; i < 256; i++)
    {
        if(i < imin) lookup.at(i) = 0;
        else if(i > imax) lookup.at(i) = 255;
        else
        {
            int v = 255 * (i - imin) / (imax - imin);
            lookup.at(i) = static_cast(v);
        }
    }
    cv::Mat ret;
    cv::LUT(image, lookup, ret);
    return ret;
}

// Computes the 1D histogram and returns an image of it.
cv::Mat Histogram1D::getHistogramImage(const cv::Mat &image)
{
    // Compute histogram first
    cv::MatND hist = getHistogram(image);
    // Get min and max bin values
    double maxVal = 0;
    double minVal = 0;
    cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0);
    // Image on which to display histogram
    cv::Mat histImg(histSize[0], histSize[0], CV_8U, cv::Scalar(255));
    // set highest point at 90% of nbins
    int hpt = static_cast(0.9 * histSize[0]);
    // Draw a vertical line for each bin
    for( int h = 0; h < histSize[0]; h++ )
    {
        float binVal = hist.at(h);
        int intensity = static_cast(binVal * hpt / maxVal);
        // This function draws a line between 2 points
        cv::line(histImg, cv::Point(h, histSize[0]),
        cv::Point(h,histSize[0]-intensity), cv::Scalar::all(0));
    }
    return histImg;
}


cv::MatND ColorHistogram::getHistogram(const cv::Mat &image)
{
    cv::MatND hist;
    // Compute histogram
    cv::calcHist(&image,
                 1, // histogram of 1 image only
                 channels, // the channel used
                 cv::Mat(), // no mask is used
                 hist, // the resulting histogram
                 3, // it is a 3D histogram
                 histSize, // number of bins
                 ranges // pixel value range
                 );
    return hist;
}

cv::SparseMat ColorHistogram::getSparseHistogram(const cv::Mat &image)
{
    cv::SparseMat hist(3,histSize,CV_32F);
    // Compute histogram
    cv::calcHist(&image,
                 1, // histogram of 1 image only
                 channels, // the channel used
                 cv::Mat(), // no mask is used
                 hist, // the resulting histogram
                 3, // it is a 3D histogram
                 histSize, // number of bins
                 ranges // pixel value range
                 );
    return hist;
}

下面给个简单的例子:

    cv::Mat image = cv::imread("D:\\向日葵.jpg");
    cv::cvtColor(image, image, cv::COLOR_BGR2GRAY);
    cv::imshow("origin", image);
    Histogram1D hist;
    cv::Mat h = hist.getHistogramImage(image);

    cv::Mat his1 = hist.getHistogram(image);
    cv::imshow("hist", h);

    image = hist.stretch(image, 0, 0.150);
    cv::imshow("2", image);

    cv::Mat h2 = hist.getHistogramImage(image);

    cv::Mat his2 = hist.getHistogram(image);
    cv::imshow("hist2", h2);

这个例子很简单,加载一幅图像,先变成灰度图,然后计算直方图。再对图像的直方图拉伸一下,之后在重新计算直方图。输出结果如下图:
OpenCV 学习笔记(颜色直方图计算 calcHist)_第1张图片

上面的例子是针对灰度图像的,对于彩色图像要用 ColorHistogram 这个类。彩色图像通常具有的颜色非常多,直接计算得到的结果会非常大。通常我们要先对颜色进行缩减操作。这个缩减操作可以用下面这个函数:

void colorReduceIO(const cv::Mat &image, // input image
                   cv::Mat &result,      // output image
                   int div)
{
    int nl = image.rows; // number of lines
    int nc = image.cols; // number of columns
    int nchannels = image.channels(); // number of channels

    // allocate output image if necessary
    result.create(image.rows, image.cols, image.type());

    for (int j = 0; j < nl; j++)
    {
        // get the addresses of input and output row j
        const uchar* data_in = image.ptr(j);
        uchar* data_out = result.ptr(j);

        for (int i = 0; i < nc * nchannels; i++)
        {
            // process each pixel ---------------------
            data_out[i] = data_in[i] / div*div + div / 2;
            // end of pixel processing ----------------
        } // end of line
    }
}

通常我们把图像数据最低2位去掉是不影响显示效果的。去掉最低的 4 位也不影响大多数的后续处理。下面给个简单的例子:

    cv::Mat image = cv::imread("D:\\向日葵.jpg");
    cv::pyrDown(image, image);
    cv::Mat image4, image16, image8;
    colorReduceIO(image, image4, 4);
    colorReduceIO(image, image8, 8);
    colorReduceIO(image, image16, 16);
    cv::imshow("origin", image); 
    cv::imshow("image4", image4);
    cv::imshow("image16", image16);
    cv::imshow("image8", image8);

结果如下图:
OpenCV 学习笔记(颜色直方图计算 calcHist)_第2张图片所以缩减一下颜色数量再做颜色直方图会减少大量内存消耗。对后续其他的处理也有帮助。

你可能感兴趣的:(OpenCV 学习笔记(颜色直方图计算 calcHist))