01. 算法分类
十种常见排序算法可以分为两大类:
比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
02. 算法复杂度
03. 相关概念
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
04. 算法介绍
1. 冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
tip:比较当前元素和下一个,较大的放在右侧。
比较相邻元素+交换
1.1 算法描述
代码如下:
function bubbleSort(arr) {
varlen = arr.length;
for(vari = 0; i < len - 1; i++) {
for(varj = 0; j < len - 1 - i; j++) {
if(arr[j] > arr[j+1]) { // 相邻元素两两对比
vartemp = arr[j+1]; // 元素交换
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
2. 选择排序
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
tip:每次选择无序中最小(大)的元素和第一个无序元素交换
比较所有无序元素+交换
2.1 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
function selectionSort(arr) {
varlen = arr.length;
varminIndex, temp;
for(vari = 0; i < len - 1; i++) {
minIndex = i;
for(varj = i + 1; j < len; j++) {
if(arr[j] < arr[minIndex]) { // 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
return arr;
}
3. 插入排序
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
tip:从无序元素中拿下表最小的元素插入到有序序列中
从后往前比较有序元素+插入
3.1 算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
function insertionSort(arr) {
varlen = arr.length;
varpreIndex, current;
for(vari = 1; i < len; i++) {
preIndex = i - 1;
current = arr[i];
while(preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex + 1] = arr[preIndex];
preIndex--;
}
arr[preIndex + 1] = current;
}
return arr;
}
4. 希尔排序
希尔排序是将待排序的数组元素 按下标的一定增量分组 ,分成多个子序列,然后对各个子序列进行直接插入排序算法排序;然后依次缩减增量再进行排序,直到增量为1时,进行最后一次直接插入排序,排序结束。
第一个增量=数组的长度/2,
第二个增量= 第一个增量/2,
第三个增量=第二个增量/2,
以此类推,最后一个增量=1。
例子:
tip:将数组元素按下标增量方式分组,直接进行插入排序
增量分组+插入排序
5. 归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
堆的实现通常是通过构造二叉堆实现。而且因为二叉堆的应用很普遍,当不加限定时,堆通常指的就是二叉堆。
堆(二叉堆)可以视为一棵完全的二叉树。完全二叉树的一个优秀的性质就是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。
而二叉堆一般分为两种:最大堆和最小堆。
最大堆:最大堆中的最大元素在根结点(堆顶);堆中每个父节点的元素值都大于等于其子结点(如果子节点存在)
最小堆:最小堆中的最小元素出现在根结点(堆顶);堆中每个父节点的元素值都小于等于其子结点(如果子节点存在)
tip:堆的插入都是将新数据放在数组最后。堆的删除每次都只能删除第0个数据
堆排序示例:最后一个分支节点即最后一个非叶子节点。调整时选择左右子节点中最大/最小的节点进行交换。
交换根节点元素和数组最后一位元素: