目标检测算法终结篇:YOLOv7(非正式版)正式开源

关注并星标

从此不迷路

计算机视觉研究院

e26c617cc7a1872f78d782711c9f8783.gif

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第1张图片

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

请注意,这里的7,不是下一代YOLO,而是一个幸运数字,姑且可以看作是一个代号。它的目的是让YOLO全面开花,不仅仅只是做目标检测。也不是简单的加一个semantic head做分割,而是做一个体系的目标检测积木模块,即插即用,使之能够更简单的做复杂的上层任务,比如多个分类head,实例分割,甚至是加上姿态检测等等。

转自《知乎——金天》

链接:https://zhuanlan.zhihu.com/p/464007111

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第2张图片

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第3张图片

介绍

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第4张图片

目前支持的东西就这么一些,现列举一些大家可能感兴趣的:

  • 支持GridMask,Mosiac的数据增强,而且可以可视化;

  • 支持YOLOX(很强),而且部署方式比原版更方便,可训练,官方不是唯一可选;

  • 支持YOLOv7+实例分割,是SingleStage的方式,目前用的是OrienMaskHead,未来可能增加更多方式;

  • 支持DETR,AnchorDETR等transformer,这是独一无二的,在一个框架里面同时被支持;

  • YOLOv4 contained with CSP-Darknet53;

  • YOLOv7 arch with resnets backbone;

  • YOLOv7 arch with resnet-vd backbone (likely as PP-YOLO), deformable conv, Mish etc;

  • GridMask augmentation from PP-YOLO included;

  • YOLOv7 arch Swin-Transformer support (higher accuracy but lower speed);

  • YOLOv7 arch Efficientnet + BiFPN;

  • YOLOv5 style positive samples selection, new coordinates coding style;

  • RandomColorDistortion, RandomExpand, RandomCrop, RandomFlip;

  • CIoU loss (DIoU, GIoU) and label smoothing (from YOLOv5 & YOLOv4);

  • YOLOF also included;

  • YOLOv7 Res2net + FPN supported;

  • Pyramid Vision Transformer v2 (PVTv2) supported;

  • WBF (Weighted Box Fusion), this works better than NMS, link;

  • YOLOX like head design and anchor design, also training support;

  • YOLOX s,m,l backbone and PAFPN added, we have a new combination of YOLOX backbone and pafpn;

  • YOLOv7 with Res2Net-v1d backbone, we found res2net-v1d have a better accuracy then darknet53;

  • Added PPYOLOv2 PAN neck with SPP and dropblock;

  • YOLOX arch added, now you can train YOLOX model (anchor free yolo) as well;

  • DETR: transformer based detection model and onnx export supported, as well as TensorRT acceleration;

  • AnchorDETR: Faster converge version of detr, now supported!

最后强调一下,这个版本里面的transformer是支持转到ONNX的,并且这个ONNX是可以被TensorRT推理的。据我所知,这在全网没有任何一个开源的仓库做得到。

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第5张图片

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第6张图片

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第7张图片

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第8张图片

社区支持

为什么要开源这个框架,原因主要是两个:

  • 我希望利用社区的力量把它做的更完善,增加更多的功能,这一年我们越来越相信社区的力量,众人拾材火焰高,不同的人研究优化不同的方向,就可以把这个框架被更多人用起来,用它训练的模型和部署起来的模型就可以跑在更多的地方,这才是价值所在;

  • 我没有卡继续维护这些模型,希望有卡的朋友们一起来训模型,把社区做起来。

一个好的框架离不开发起人的积极参与和技术支持,我会一如既往的回答大家的问题,希望能给开源尽一些绵薄之力。

非常欢迎有时间,有计算资源,懂行的朋友来贡献代码或者模型,尤其是做目标检测方向的朋友们,这确实是发自内心一个非常良心的建议,把这些好的算法都汇聚到一起来吧。让社区的力量把它发展的更加壮大。

Github:https://github.com/jinfagang/yolov7

GridMask

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第9张图片

Mosaic

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第10张图片

© THE END 

转载请联系本公众号获得授权

402329e5c32d4263cf1fd7f6dcd12bc2.gif

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

目标检测算法终结篇:YOLOv7(非正式版)正式开源_第11张图片

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

 往期推荐 

  • YoloV5一系列实践详情,Github代码已开源

  • YOLOv5桌面应用开发(上)——附源代码

  • GiraffeDet:对目标检测中对Neck进行优化提升最终精度

  • 深度学习目标检测在实际场景中的应用(附源代码)

  • Label,Verify,Correct:一种简单的Few Shot 目标检测方法

  • SPARSE DETR:具有可学习稀疏性的高效端到端目标检测(源代码下载)

  • 自适应特征融合用于Single-Shot目标检测(附源代码下载)

  • 目标检测:SmartDet、Miti-DETR和Few-Shot Object Detection

  • RestoreDet:低分辨率图像中目标检测

  • Yolo-Z:改进的YOLOv5用于小目标检测(附原论文下载)

你可能感兴趣的:(算法,机器学习,人工智能,python,编程语言)