今天我们先学习内存优化中的一个小知识点,就是内存泄露的检测和解决。当然,如何解决是大多数中级工程师都要去学习的东西,网上也有大量的资料,所以我这里不会详解。而是主要着眼于内存泄露的检测。Square公司出品的大名鼎鼎的LeakCanary,就是业界知名的内存泄露检测的利器。
阅读本篇文章,预计需要20分钟,你将会学习到:
关于LeakCanary的原理,官网上已经给出了详细的解释。翻译过来就是:
通过官网的介绍,我们很容易就抓住了学习LeakCanary这个库的重点:
看官方原理总是感觉不过瘾,下面我们从代码层面上来分析。本文基于LeakCanary 2.0 beta版。
LeakCanary的使用相当的简单。只需要在module的build.gradle添加一行依赖,代码侵入少。
dependencies {
// debugImplementation because LeakCanary should only run in debug builds.
debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.0-beta-3'
}
就这样,应用非常简单就接入了LeakCanary内存检测功能。当然还有一些更高级的用法,比如更改自定义config,增加监控项等,大家可以参考官网
和之前的1.x版本相比,2.0甚至都不需要再在Application里面增加install的代码。可能很多的同学都会疑惑,LeakCanary是如何插入自己的初始化代码的呢? 其实这里LeakCanary是使用了ContentProvider来进行初始化。我之前在介绍Android插件化系列三:技术流派和四大组件支持的时候曾经介绍过ContentProvider的特点,即在打包的过程中来自不同module的ContentProvider最后都会merge到一个文件中,启动app的时候ContentProvider是自动安装,并且安装会比Application的onCreate还早。LeakCanary就是依据这个原理进行的设计。具体可以参考【译】你的Android库是否还在Application中初始化?
我们可以查看LeakCanary源码,发现它在leakcanary-object-watcher-android的AndroidManifest.xml中有一个ContentProvider。
<provider
android:name="leakcanary.internal.AppWatcherInstaller$MainProcess"
android:authorities="${applicationId}.leakcanary-installer"
android:exported="false"/>
然后我们查看AppWatcherInstaller的代码,发现内部是使用InternalAppWatcher进行的install。
// AppWatcherInstaller
override fun onCreate(): Boolean {
val application = context!!.applicationContext as Application
InternalAppWatcher.install(application)
return true
}
// InternalAppWatcher
fun install(application: Application) {
// 省略部分代码
checkMainThread()
if (this::application.isInitialized) {
return
}
InternalAppWatcher.application = application
val configProvider = { AppWatcher.config }
ActivityDestroyWatcher.install(application, objectWatcher, configProvider)
FragmentDestroyWatcher.install(application, objectWatcher, configProvider)
onAppWatcherInstalled(application)
}
可以看到这里主要把Activity和Fragment区分了开来,然后分别进行注册。Activity的生命周期监听是借助于Application.ActivityLifecycleCallbacks。
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityDestroyed(activity: Activity) {
if (configProvider().watchActivities) {
objectWatcher.watch(activity)
}
}
}
application.registerActivityLifecycleCallbacks(activityDestroyWatcher.lifecycleCallbacks)
而Fragment的生命周期监听是借助了Activity的ActivityLifecycleCallbacks生命周期回调,当Activity创建的时候去调用FragmentManager.registerFragmentLifecycleCallbacks方法注册Fragment的生命周期监听。
override fun onFragmentViewDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
val view = fragment.view
if (view != null && configProvider().watchFragmentViews) {
objectWatcher.watch(view)
}
}
override fun onFragmentDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
if (configProvider().watchFragments) {
objectWatcher.watch(fragment)
}
}
}
最终,Activity和Fragment都将自己的引用传入了ObjectWatcher.watch()进行监控。从这里开始进入到LeakCanary的引用监测逻辑。
题外话:LeakCanary 2.0版本和1.0版本相比,增加了Fragment的生命周期监听,每个类的职责也更加清晰。但是我个人觉得使用
(Activty)->Unit
这种lambda表达式作为类的写法不是很优雅,倒不如面向接口编程。完全可以设计成ActivityWatcher和FragmentWatcher都继承自某个接口,这样也方便后续扩展。
一个对象在被gc的时候,如果发现还有软引用(或弱引用,或虚引用)指向它,就会在回收对象之前,把这个引用加入到与之关联的引用队列(ReferenceQueue)中去。如果一个软引用(或弱引用,或虚引用)对象本身在引用队列中,就说明该引用对象所指向的对象被回收了。
当软引用(或弱引用,或虚引用)对象所指向的对象被回收了,那么这个引用对象本身就没有价值了,如果程序中存在大量的这类对象(注意,我们创建的软引用、弱引用、虚引用对象本身是个强引用,不会自动被gc回收),就会浪费内存。因此我们这就可以手动回收位于引用队列中的引用对象本身。
比如我们经常看到这种用法
WeakReference<ArrayList> weakReference = new WeakReference<ArrayList>(list);
还有也有这样一种用法
WeakReference<ArrayList> weakReference = new WeakReference<ArrayList>(list, new ReferenceQueue<WeakReference<ArrayList>>());
这样就可以把对象和ReferenceQueue关联起来,进行对象是否gc的判断了。另外我们从弱引用的特征中看到,弱引用是不会影响到这个对象是否被gc的,很适合用来监控对象的gc情况。
2. GC
java中有两种手动调用GC的方式。
System.gc();
// 或者
Runtime.getRuntime().gc();
我们在第一节中提到,Activity和Fragment都依赖于响应的LifecycleCallback来回调销毁信息,然后调用了ObjectWatcher.watch添加了销毁后的监控。接下来我们看
ObjectWatcher.watch做了什么操作。
@Synchronized fun watch(
watchedObject: Any,
name: String
) {
removeWeaklyReachableObjects()
val key = UUID.randomUUID().toString()
val watchUptimeMillis = clock.uptimeMillis()
val reference =
KeyedWeakReference(watchedObject, key, name, watchUptimeMillis, queue)
watchedObjects[key] = reference
checkRetainedExecutor.execute {
moveToRetained(key)
}
}
private fun removeWeaklyReachableObjects() {
// WeakReferences are enqueued as soon as the object to which they point to becomes weakly
// reachable. This is before finalization or garbage collection has actually happened.
var ref: KeyedWeakReference?
do {
ref = queue.poll() as KeyedWeakReference?
if (ref != null) {
watchedObjects.remove(ref.key)
}
} while (ref != null)
}
@Synchronized private fun moveToRetained(key: String) {
removeWeaklyReachableObjects()
val retainedRef = watchedObjects[key]
if (retainedRef != null) {
retainedRef.retainedUptimeMillis = clock.uptimeMillis()
onObjectRetainedListeners.forEach { it.onObjectRetained() }
}
}
这里我们看到,有一个存储着KeyedWeakReference的ReferenceQueue对象。在每次增加watch object的时候,都会去把已经处于ReferenceQueue中的对象给从监控对象的map即watchObjects中清理掉,因为这些对象都已经被回收了。然后再去生成一个KeyedWeakReference,这个对象就是一个持有了key和监测开始时间的WeakReference对象。最后再去调用moveToRetained,相当于记录和回调给监控方这个对象正式开始监测的时间。
那么我们现在已经拿到了需要监控的对象了,但是又是怎么去判断这个对象已经内存泄露的呢?这就要继续往下面看。我们主要到前面在讲解InternalAppWatcher的install方法的时候,除了install了Activity和Fragment的检测器,还调用了onAppWatcherInstalled(application)方法,看代码发现这个方法就是InternalLeakCanary的invoke方法。
override fun invoke(application: Application) {
this.application = application
AppWatcher.objectWatcher.addOnObjectRetainedListener(this)
val heapDumper = AndroidHeapDumper(application, leakDirectoryProvider)
val gcTrigger = GcTrigger.Default
val configProvider = { LeakCanary.config }
val handlerThread = HandlerThread(LEAK_CANARY_THREAD_NAME)
handlerThread.start()
val backgroundHandler = Handler(handlerThread.looper)
heapDumpTrigger = HeapDumpTrigger(
application, backgroundHandler, AppWatcher.objectWatcher, gcTrigger, heapDumper,
configProvider
)
}
override fun onObjectRetained() {
if (this::heapDumpTrigger.isInitialized) {
heapDumpTrigger.onObjectRetained()
}
}
我们看到首先是初始化了heapDumper,gcTrigger,heapDumpTrigger等对象用于gc和heapDump,同时还实现了OnObjectRetainedListener,并把自己添加到了上面的onObjectRetainedListeners中,以便每个对象moveToRetained的时候,InternalLeakCanary都能获取到onObjectRetained()的回调,回调里就只是回调了heapDumpTrigger.onObjectRetained()方法。看来都是依赖于HeapDumpTrigger这个类。
HeapDumpTrigger主要的处理逻辑都在checkRetainedObjects方法中。
private fun checkRetainedObjects(reason: String) {
val config = configProvider()
var retainedReferenceCount = objectWatcher.retainedObjectCount
if (retainedReferenceCount > 0) {
gcTrigger.runGc() // 触发一次GC操作,只保留不能被回收的对象
retainedReferenceCount = objectWatcher.retainedObjectCount
}
if (checkRetainedCount(retainedReferenceCount, config.retainedVisibleThreshold)) return
if (!config.dumpHeapWhenDebugging && DebuggerControl.isDebuggerAttached) {
showRetainedCountWithDebuggerAttached(retainedReferenceCount)
scheduleRetainedObjectCheck("debugger was attached", WAIT_FOR_DEBUG_MILLIS)
return
}
val heapDumpUptimeMillis = SystemClock.uptimeMillis()
KeyedWeakReference.heapDumpUptimeMillis = heapDumpUptimeMillis
dismissRetainedCountNotification()
val heapDumpFile = heapDumper.dumpHeap()
if (heapDumpFile == null) {
scheduleRetainedObjectCheck("failed to dump heap", WAIT_AFTER_DUMP_FAILED_MILLIS)
showRetainedCountWithHeapDumpFailed(retainedReferenceCount)
return
}
lastDisplayedRetainedObjectCount = 0
objectWatcher.clearObjectsWatchedBefore(heapDumpUptimeMillis)
HeapAnalyzerService.runAnalysis(application, heapDumpFile)
}
那么HeapDumpTrigger具体做了些啥呢?我理了一下主要是下面几个功能:
看到了这里,我们应该脑海中有概念了。Activity和Fragment通过注册系统的监听在onDestroy的时候把自己的引用放入ObjectWatcher进行监测,监测主要是通过HeapDumpTrigger类轮询进行,主要是调用AndroidHeapDumper来dump出文件来,然后依赖于HeapAnalyzerService来进行分析。后面一小节,我们将会聚焦于对象dump操作和HeapAnalyzerService的分析过程。
hprof是JDK提供的一种JVM TI Agent native工具。JVM TI,全拼是JVM Tool interface,是JVM提供的一套标准的C/C++编程接口,是实现Debugger、Profiler、Monitor、Thread Analyser等工具的统一基础,在主流Java虚拟机中都有实现。hprof工具事实上也是实现了这套接口,可以认为是一套简单的profiler agent工具。
用过Android Studio Profiler工具的同学对hprof文件都不会陌生,当我们使用Memory Profiler工具的Dump Java heap图标的时候,profiler工具就会去捕获你的内存分配情况。但是捕获以后,只有在Memory Profiler正在运行的时候我们才能查看,那么我们要怎么样去保存当时的内存使用情况呢,又或者我想用别的工具来分析堆分配情况呢,这时候hprof文件就派上用场了。Android Studio可以把这些对象给export到hprof文件中去。
LeakCanary也是使用的hprof文件进行对象存储。hprof文件比较简单,整体按照 前置信息 + 记录表的格式来组织的。但是记录的种类相当之多。具体种类可以查看HPROF Agent。
同时,android中也提供了一个简便的方法Debug.dumpHprofData(filePath)可以把对象dump到指定路径下的hprof文件中。LeakCanary使用使用Shark库来解析Hprof文件中的各种record,比较高效,使用Shark中的HprofReader和HprofWriter来进行读写解析,获取我们需要的信息。大家可以关注一些比较重要的,比如:
override fun dumpHeap(): File? {
val heapDumpFile = leakDirectoryProvider.newHeapDumpFile() ?: return null
return try {
Debug.dumpHprofData(heapDumpFile.absolutePath)
if (heapDumpFile.length() == 0L) {
null
} else {
heapDumpFile
}
} catch (e: Exception) {
null
} finally {
}
}
前面我们已经分析到了,HeapDumpTrigger主要是依赖于HeapAnalyzerService进行分析。那么这个HeapAnalyzerService究竟有什么玄机?让我们继续往下面看。可以看到HeapAnalyzerService其实是一个ForegroundService。在接收到分析的Intent后就会调用HeapAnalyzer的analyze方法。所以最终进行分析的地方就是HeapAnalyzer的analyze方法。
核心代码如下
try {
listener.onAnalysisProgress(PARSING_HEAP_DUMP)
Hprof.open(heapDumpFile)
.use { hprof ->
// 1.生成graph
val graph = HprofHeapGraph.indexHprof(hprof, proguardMapping)
// 2.寻找Leak
val findLeakInput = FindLeakInput(
graph, leakFinders, referenceMatchers, computeRetainedHeapSize, objectInspectors
)
val (applicationLeaks, libraryLeaks) = findLeakInput.findLeaks()
listener.onAnalysisProgress(REPORTING_HEAP_ANALYSIS)
return HeapAnalysisSuccess(
heapDumpFile, System.currentTimeMillis(), since(analysisStartNanoTime),
applicationLeaks, libraryLeaks
)
}
} catch (exception: Throwable) {
listener.onAnalysisProgress(REPORTING_HEAP_ANALYSIS)
return HeapAnalysisFailure(
heapDumpFile, System.currentTimeMillis(), since(analysisStartNanoTime),
HeapAnalysisException(exception)
)
}
}
这段代码中涉及到了专为LeakCanary设计的Shark库的用法,在这里就不多解释了。大概介绍一下每一步的作用:
本篇文章分析了LeakCanary检测内存泄露的思路和一些代码的设计思想,但是限于篇幅不能面面俱到。接下来我们回答一下文章开头提出的问题。