简介:当一个程序员想要个漫画风的头像时...
前言
我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢?
后端项目
后端项目采用业界鼎鼎有名的动漫风格转化滤镜库 AnimeGAN 的 v2 版本,效果大概如下:
关于这个模型的具体的信息,在这里不做详细的介绍和说明。通过与 Python Web 框架结合,将 AI 模型通过接口对外暴露:
from PIL import Image
import io
import torch
import base64
import bottle
import random
import json
cacheDir = '/tmp/'
modelDir = './model/bryandlee_animegan2-pytorch_main'
getModel = lambda modelName: torch.hub.load(modelDir, "generator", pretrained=modelName, source='local')
models = {
'celeba_distill': getModel('celeba_distill'),
'face_paint_512_v1': getModel('face_paint_512_v1'),
'face_paint_512_v2': getModel('face_paint_512_v2'),
'paprika': getModel('paprika')
}
randomStr = lambda num=5: "".join(random.sample('abcdefghijklmnopqrstuvwxyz', num))
face2paint = torch.hub.load(modelDir, "face2paint", size=512, source='local')
@bottle.route('/images/comic_style', method='POST')
def getComicStyle():
result = {}
try:
postData = json.loads(bottle.request.body.read().decode("utf-8"))
style = postData.get("style", 'celeba_distill')
image = postData.get("image")
localName = randomStr(10)
# 图片获取
imagePath = cacheDir + localName
with open(imagePath, 'wb') as f:
f.write(base64.b64decode(image))
# 内容预测
model = models[style]
imgAttr = Image.open(imagePath).convert("RGB")
outAttr = face2paint(model, imgAttr)
img_buffer = io.BytesIO()
outAttr.save(img_buffer, format='JPEG')
byte_data = img_buffer.getvalue()
img_buffer.close()
result["photo"] = 'data:image/jpg;base64, %s' % base64.b64encode(byte_data).decode()
except Exception as e:
print("ERROR: ", e)
result["error"] = True
return result
app = bottle.default_app()
if __name__ == "__main__":
bottle.run(host='localhost', port=8099)
整个代码是基于 Serverless 架构进行了部分改良的:
- 实例初始化的时候,进行模型的加载,已经可能的减少频繁的冷启动带来的影响情况;
- 在函数模式下,往往只有/tmp目录是可写的,所以图片会被缓存到/tmp目录下;
- 虽然说函数计算是“无状态”的,但是实际上也有复用的情况,所有数据在存储到tmp的时候进行了随机命名;
- 虽然部分云厂商支持二进制的文件上传,但是大部分的 Serverless 架构对二进制上传支持的并不友好,所以这里依旧采用 Base64 上传的方案;
上面的代码,更多是和 AI 相关的,除此之外,还需要有一个获取模型列表,以及模型路径等相关信息的接口:
import bottle
@bottle.route('/system/styles', method='GET')
def styles():
return {
"AI动漫风": {
'color': 'red',
'detailList': {
"风格1": {
'uri': "images/comic_style",
'name': 'celeba_distill',
'color': 'orange',
'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773808708_20220320105649389392.png'
},
"风格2": {
'uri': "images/comic_style",
'name': 'face_paint_512_v1',
'color': 'blue',
'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773875279_20220320105756071508.png'
},
"风格3": {
'uri': "images/comic_style",
'name': 'face_paint_512_v2',
'color': 'pink',
'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773926924_20220320105847286510.png'
},
"风格4": {
'uri': "images/comic_style",
'name': 'paprika',
'color': 'cyan',
'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773976277_20220320105936594662.png'
},
}
},
}
app = bottle.default_app()
if __name__ == "__main__":
bottle.run(host='localhost', port=8099)
可以看到,此时我的做法是,新增了一个函数作为新接口对外暴露,那么为什么不在刚刚的项目中,增加这样的一个接口呢?而是要多维护一个函数呢?
- AI 模型加载速度慢,如果把获取AI处理列表的接口集成进去,势必会影响该接口的性能;
- AI 模型所需配置的内存会比较多,而获取 AI 处理列表的接口所需要的内存非常少,而内存会和计费有一定的关系,所以分开有助于成本的降低;
关于第二个接口(获取 AI 处理列表的接口),相对来说是比较简单的,没什么问题,但是针对第一个 AI 模型的接口,就有比较头疼的点:
- 模型所需要的依赖,可能涉及到一些二进制编译的过程,所以导致无法直接跨平台使用;
- 模型文件比较大 (单纯的 Pytorch 就超过 800M),函数计算的上传代码最多才 100M,所以这个项目无法直接上传;
所以这里需要借助 Serverless Devs 项目来进行处理:
参考 https://www.serverless-devs.c...
完成 s.yaml 的编写:
edition: 1.0.0
name: start-ai
access: "default"
vars: # 全局变量
region: cn-hangzhou
service:
name: ai
nasConfig: # NAS配置, 配置后function可以访问指定NAS
userId: 10003 # userID, 默认为10003
groupId: 10003 # groupID, 默认为10003
mountPoints: # 目录配置
- serverAddr: 0fe764bf9d-kci94.cn-hangzhou.nas.aliyuncs.com # NAS 服务器地址
nasDir: /python3
fcDir: /mnt/python3
vpcConfig:
vpcId: vpc-bp1rmyncqxoagiyqnbcxk
securityGroupId: sg-bp1dpxwusntfryekord6
vswitchIds:
- vsw-bp1wqgi5lptlmk8nk5yi0
services:
image:
component: fc
props: # 组件的属性值
region: ${vars.region}
service: ${vars.service}
function:
name: image_server
description: 图片处理服务
runtime: python3
codeUri: ./
ossBucket: temp-code-cn-hangzhou
handler: index.app
memorySize: 3072
timeout: 300
environmentVariables:
PYTHONUSERBASE: /mnt/python3/python
triggers:
- name: httpTrigger
type: http
config:
authType: anonymous
methods:
- GET
- POST
- PUT
customDomains:
- domainName: avatar.aialbum.net
protocol: HTTP
routeConfigs:
- path: /*
然后进行:
1、依赖的安装:s build --use-docker
2、项目的部署:s deploy
3、在 NAS 中创建目录,上传依赖:
s nas command mkdir /mnt/python3/python
s nas upload -r 本地依赖路径 /mnt/python3/python
完成之后可以通过接口对项目进行测试。
另外,微信小程序需要 https 的后台接口,所以这里还需要配置 https 相关的证书信息,此处不做展开。
小程序项目
小程序项目依旧采用 colorUi,整个项目就只有一个页面:
页面相关布局:
第一步:选择图片
本地上传图片
获取当前头像
* 点击图片可预览,长按图片可编辑
第二步:选择图片处理方案
{{style}}
{{substyle}}
* 长按风格圆圈可以预览模板效果
生成结果
服务暂时不可用,请稍后重试
或联系开发者微信:zhihuiyushaiqi
* 点击图片可预览,长按图片可保存
自豪的采用 Serverless Devs 搭建
Powered By Anycodes {{"<"}}作者的话{{">"}}
作者的话
大家好,我是刘宇,很感谢您可以关注和使用这个小程序,这个小程序是我用业余时间做的一个头像生成小工具,基于“人工智障”技术,反正现在怎么看怎么别扭,但是我会努力让这小程序变得“智能”起来的。如果你有什么好的意见也欢迎联系我邮箱 或者微信 ,另外值得一提的是,本项目基于阿里云Serverless架构,通过Serverless Devs开发者工具建设。
关闭预览
页面逻辑也是比较简单的:
// index.js
// 获取应用实例
const app = getApp()
Page({
data: {
styleList: {},
currentStyle: "动漫风",
currentSubStyle: "v1模型",
userChosePhoho: undefined,
resultPhoto: undefined,
previewStyle: undefined,
getPhotoStatus: false
},
// 事件处理函数
bindViewTap() {
wx.navigateTo({
url: '../logs/logs'
})
},
onLoad() {
const that = this
wx.showLoading({
title: '加载中',
})
app.doRequest(`system/styles`, {}, option = {
method: "GET"
}).then(function (result) {
wx.hideLoading()
that.setData({
styleList: result,
currentStyle: Object.keys(result)[0],
currentSubStyle: Object.keys(result[Object.keys(result)[0]].detailList)[0],
})
})
},
changeStyle(attr) {
this.setData({
"currentStyle": attr.currentTarget.dataset.style || this.data.currentStyle,
"currentSubStyle": attr.currentTarget.dataset.substyle || Object.keys(this.data.styleList[attr.currentTarget.dataset.style].detailList)[0]
})
},
chosePhoto() {
const that = this
wx.chooseImage({
count: 1,
sizeType: ['compressed'],
sourceType: ['album', 'camera'],
complete(res) {
that.setData({
userChosePhoho: res.tempFilePaths[0],
resultPhoto: undefined
})
}
})
},
headimgHD(imageUrl) {
imageUrl = imageUrl.split('/'); //把头像的路径切成数组
//把大小数值为 46 || 64 || 96 || 132 的转换为0
if (imageUrl[imageUrl.length - 1] && (imageUrl[imageUrl.length - 1] == 46 || imageUrl[imageUrl.length - 1] == 64 || imageUrl[imageUrl.length - 1] == 96 || imageUrl[imageUrl.length - 1] == 132)) {
imageUrl[imageUrl.length - 1] = 0;
}
imageUrl = imageUrl.join('/'); //重新拼接为字符串
return imageUrl;
},
getUserAvatar() {
const that = this
wx.getUserProfile({
desc: "获取您的头像",
success(res) {
const newAvatar = that.headimgHD(res.userInfo.avatarUrl)
wx.getImageInfo({
src: newAvatar,
success(res) {
that.setData({
userChosePhoho: res.path,
resultPhoto: undefined
})
}
})
}
})
},
previewImage(e) {
wx.previewImage({
urls: [e.currentTarget.dataset.image]
})
},
editImage() {
const that = this
wx.editImage({
src: this.data.userChosePhoho,
success(res) {
that.setData({
userChosePhoho: res.tempFilePath
})
}
})
},
getNewPhoto() {
const that = this
wx.showLoading({
title: '图片生成中',
})
this.setData({
getPhotoStatus: true
})
app.doRequest(this.data.styleList[this.data.currentStyle].detailList[this.data.currentSubStyle].uri, {
style: this.data.styleList[this.data.currentStyle].detailList[this.data.currentSubStyle].name,
image: wx.getFileSystemManager().readFileSync(this.data.userChosePhoho, "base64")
}, option = {
method: "POST"
}).then(function (result) {
wx.hideLoading()
that.setData({
resultPhoto: result.error ? "error" : result.photo,
getPhotoStatus: false
})
})
},
saveImage() {
wx.saveImageToPhotosAlbum({
filePath: this.data.resultPhoto,
success(res) {
wx.showToast({
title: "保存成功"
})
},
fail(res) {
wx.showToast({
title: "异常,稍后重试"
})
}
})
},
onShareAppMessage: function () {
return {
title: "头头是道个性头像",
}
},
onShareTimeline() {
return {
title: "头头是道个性头像",
}
},
showModal(e) {
if(e.currentTarget.dataset.target=="Image"){
const previewSubStyle = e.currentTarget.dataset.substyle
const previewSubStyleUrl = this.data.styleList[this.data.currentStyle].detailList[previewSubStyle].preview
if(previewSubStyleUrl){
this.setData({
previewStyle: previewSubStyleUrl
})
}else{
wx.showToast({
title: "暂无模板预览",
icon: "error"
})
return
}
}
this.setData({
modalName: e.currentTarget.dataset.target
})
},
hideModal(e) {
this.setData({
modalName: null
})
},
copyData(e) {
wx.setClipboardData({
data: e.currentTarget.dataset.data,
success(res) {
wx.showModal({
title: '复制完成',
content: `已将${e.currentTarget.dataset.data}复制到了剪切板`,
})
}
})
},
})
因为项目会请求比较多次的后台接口,所以,我将请求方法进行额外的抽象:
// 统一请求接口
doRequest: async function (uri, data, option) {
const that = this
return new Promise((resolve, reject) => {
wx.request({
url: that.url + uri,
data: data,
header: {
"Content-Type": 'application/json',
},
method: option && option.method ? option.method : "POST",
success: function (res) {
resolve(res.data)
},
fail: function (res) {
reject(null)
}
})
})
}
完成之后配置一下后台接口,发布审核即可。
本文作者刘宇(花名:江昱)
原文链接
本文为阿里云原创内容,未经允许不得转载。