【YOLOv5-6.x】解决加入CA注意力机制不显示FLOPs的问题

1、问题描述

问题源自之前写的一篇博客:【魔改YOLOv5-6.x(中)】:加入ACON激活函数、CBAM和CA注意力机制、加权双向特征金字塔BiFPN,尝试在YOLOv5的backbone中加入Coordinate Attention,虽然加入后mAP有提升,但是重要的GFLOPs信息却无法显示!!

2、问题解决

于是我就开始了疯狂debug,在各个位置加断点,加断点,终于锁定源头:CABlock类函数的定义

这是CABlock原始类函数,在__init__中定义了两个自适应平均池化nn.AdaptiveAvgPool2d(),正是这两个自适应平均池化,导致加入CA后GFLOPs信息无法显示,具体原因目前还不清楚,欢迎各位大佬前来交流~

class CABlock(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CABlock, self).__init__()
        # ============================
        # height方向上的均值池化
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        # width方向上的均值池化
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out

于是,我改成了下面这样,问题就得到解决了

class CABlock(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CABlock, self).__init__()
        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, 1, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, 1, 1, bias=False)
        self.conv_w = nn.Conv2d(mip, oup, 1, 1, bias=False)

    def forward(self, x):
        identity = x
        _, _, h, w = x.size()
        pool_h = nn.AdaptiveAvgPool2d((h, 1))
        x_h = pool_h(x)
        pool_w = nn.AdaptiveAvgPool2d((1, w))
        x_w = pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        y_h, y_w = torch.split(y, [h, w], dim=2)
        y_w = y_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(y_h).sigmoid()
        a_w = self.conv_w(y_w).sigmoid()

        return identity * a_w * a_h

你可能感兴趣的:(目标检测,YOLOv5,深度学习,目标检测,人工智能)