UBUNTU16.04 安装Tensorflow(CPU和GPU)

一、ubuntu 16.04 安装Tensorflow(CPU)

1、安装pip

      打开终端输入命令:sudo apt-get install python-pip python-dev

2、安装tensorflow

      sudopip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl

      安装成功:

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第1张图片

3、测试

      import tensorflow as tf

      a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')

      b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')

      c=a+b

      sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))

      print sess.run(c)

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第2张图片

 

二、ubuntu 16.04 安装Tensorflow(GPU)

1、安装显卡GPU驱动

      打开终端:sudo apt-get update

      选择系统设置→软件更新→附加驱动→选择nvidia最新驱动→应用更改.

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第3张图片

      验证安装成功:nvidia-settings

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第4张图片


2、安装Tensorflow依赖的编译工具bazel

      bazel安装方法网址:https://bazel.build/versions/master/docs/install-ubuntu.html

(1) 安装bazel前,需先安装JDK8

      sudo apt-get installsoftware-properties-common

      sudoadd-apt-repository ppa:webupd8team/java

      sudo apt-get update

      sudo apt-get installoracle-java8-installer

      验证java版本:java -version

       

(2) 安装bazel

      echo "deb [arch=amd64]http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee/etc/apt/sources.list.d/bazel.list

      sudo apt install curl

      curlhttps://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

      sudo apt-get update

      sudo apt-get upgrade bazel


3、安装cuda 8.0

      下载地址:https://developer.nvidia.com/cuda-downloads

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第5张图片

      sudo dpkg -icuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb

      sudo apt-get update

      sudo apt-get install cuda

      查看gcc版本信息:gcc –v

      

      由于cuda8.0不支持gcc 5.0以上的编译器,因此需要降级,把编译器版本降到4.9:

      sudoapt-get install g++-4.9

      sudoupdate-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20

      sudoupdate-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10

      sudoupdate-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20

      sudoupdate-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10

      sudoupdate-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30

      sudoupdate-alternatives --set cc /usr/bin/gcc

      sudoupdate-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30

      sudoupdate-alternatives --set c++ /usr/bin/g++

      

4、安装cuDNN 6.0

      下载地址: https://developer.nvidia.com/cudnn

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第6张图片

        cp cudnn-8.0-linux-x64-v6.0.solitairetheme8 cudnn-8.0-linux-x64-v6.0.tgz

        tar -xvf cudnn-8.0-linux-x64-v6.0.tgz

        sudo cp cuda/include/cudnn.h/usr/local/cuda/include

        sudo cp cuda/lib64/libcudnn*/usr/local/cuda/lib64

        sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

 

5、配置环境变量

      sudo gedit ~/.bashrc

      export LD_LIBRARY_PATH=”$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64”

      export CUDA_HOME=/usr/local/cuda

      exportPATH="$CUDA_HOME/bin:$PATH"

     

     source ~/.bashrc

 

6、安装Tensflow

(1) 安装Tensorflow依赖的其它工具包

      sudo apt-get install python-numpy swigpython-dev python-wheel

(2) 下载最新的Tensorflow源码

      sudo apt-get install git

      git clone https://github.com/tensorflow/tensorflow

(3) 运行configure脚本配置环境信息

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第7张图片

(4) 通过bazel来编译pip的安装包,然后通过pip安装

      bazel build -c opt --config=cuda//tensorflow/tools/pip_package:build_pip_package

      bazel-bin/tensorflow/tools/pip_package/build_pip_package/tmp/tensorflow_pkg

      sudo pip install/tmp/tensorflow_pkg/tensorflow-1.2.0rc2-cp27-cp27mu-linux_x86_64.whl

      第一个命令中 --config=cuda参数为对GPU的支持,如何不需要支持GPU,就不需要这个参数。

      安装成功:

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第8张图片

(5) 代码测试

      在配置好GPU环境的Tensorflow中,如果操作没有明确地指定运行设备,Tenserflow会优先选择GPU。

      import tensorflow as tf

      a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')

      b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')

      c=a+b

      sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))

      print sess.run(c)

      UBUNTU16.04 安装Tensorflow(CPU和GPU)_第9张图片

     下面给一个通过tf.device手工指定运行设备的例子:

     import tensorflow as tf

     with tf.device('/cpu:0'):

            a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')

            b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')

     with tf.device('/gpu:0'):

            c=a+b

     sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))

     print sess.run(c)

UBUNTU16.04 安装Tensorflow(CPU和GPU)_第10张图片

转载自:

https://blog.csdn.net/jiang_z_q/article/details/73264561

你可能感兴趣的:(Ros系统)