CVPR 2021 结果出炉!最全论文下载及分类汇总(更新中)

作为计算机视觉领域三大顶会之一,CVPR2021目前已公布了所有接收论文ID,一共有1663篇论文被接收,接收率为23.7%,虽然接受率相比去年有所上升,但竞争也是非常激烈。

CVPR2021 最全整理:论文分类汇总 / 代码 / 项目 / 论文解读(更新中):
https://bbs.cvmart.net/post/4267


此前我们对CVPR2020/2019/2018、ECCV2020、ICCV进行了分类汇总整理,所有的内容都汇总于社区 or Github:

https://bbs.cvmart.net/post/62


https://github.com/extreme-assistant/CVPR2021-Paper-Code-Interpretation

在本文中,我们对CVPR2021的最新论文进行了分类汇总按研究方向整理。包含目标检测、图像分割、目标跟踪、医学影像、3D、模型压缩、图像处理、姿态估计、文本检测等多个方向,同时,我们将对优秀论文解读报道技术直播,欢迎大家关注~

由于编辑器的限制,最新版本的论文汇总请大家前往我们的Github


1.CVPR2021接受论文/代码分方向汇总(持续更新)

分类目录:

1. 检测(detection)

  • 图像目标检测(Image Object Detection)
  • 视频目标检测(Video Object Detection)
  • 动作检测(Activity Detection)
  • 异常检测(Anomally Detetion)

2. 图像分割(Image Segmentation)

  • 全景分割(Panoptic Segmentation)
  • 语义分割(Semantic Segmentation)
  • 实例分割(Instance Segmentation)

3. 人体姿态估计(Human Pose Estimation)

4. 人脸(Face)

5. 目标跟踪(Object Tracking)

6. 医学影像(Medical Imaging)

7. 神经网络架构搜索(NAS)

8. GAN/生成式/对抗式(GAN/Generative/Adversarial)

9. 超分辨率(Super Resolution)

10. 图像复原(Image Restoration)

11. 图像编辑(Image Edit)

12. 图像翻译(Image Translation)

13. 三维视觉(3D Vision)

  • 三维点云(3D Point Cloud)
  • 三维重建(3D Reconstruction)

14. 神经网络架构(Neural Network Structure)

  • Transformer
  • 图神经网络(GNN)

15. 数据处理(Data Processing)

  • 数据增广(Data Augmentation)
  • 归一化(Batch Normalization)
  • 图像聚类(Image Clustering)

16. 模型压缩(Model Compression)

  • 知识蒸馏(Knowledge Distillation)

17. 模型评估(Model Evaluation)

18. 数据集(Database)

19. 主动学习(Active Learning)

20. 小样本学习(Few-shot Learning)

21. 持续学习(Continual Learning/Life-long Learning)

22. 暂无分类



检测

图像目标检测(Image Object Detection)

  1. Instance Localization for Self-supervised Detection Pretraining

    paper|code

  2. Multiple Instance Active Learning for Object Detection(用于对象检测的多实例主动学习)

    paper|code

  3. Open-world object detection(开放世界中的目标检测)

    code

  4. Positive-Unlabeled Data Purification in the Wild for Object Detection(野外检测对象的阳性无标签数据提纯)

  5. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

    paper

    解读:无监督预训练检测器

视频目标检测(Video Object Detection)

  1. Dogfight: Detecting Drones from Drone Videos(从无人机视频中检测无人机)

动作检测(Activity Detection)

  1. Coarse-Fine Networks for Temporal Activity Detection in Videos

异常检测(Anomally Detetion)

  1. Multiresolution Knowledge Distillation for Anomaly Detection(用于异常检测的多分辨率知识蒸馏)

    paper


图像分割(Image Segmentation)

  1. PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation(语义流经点以进行航空图像分割)

全景分割(Panoptic Segmentation)

  1. 4D Panoptic LiDAR Segmentation(4D全景LiDAR分割)

    paper

语义分割(Semantic Segmentation)

  1. PLOP: Learning without Forgetting for Continual Semantic Segmentation(PLOP:学习而不会忘记连续的语义分割)

    paper

实例分割(Instance Segmentation)


人体姿态估计(Human Pose Estimation)

  1. CanonPose: Self-supervised Monocular 3D Human Pose Estimation in the Wild(野外自监督的单眼3D人类姿态估计)

  2. PCLs: Geometry-aware Neural Reconstruction of 3D Pose with Perspective Crop Layers(具有透视作物层的3D姿势的几何感知神经重建)

    paper


图像编辑(Image Edit)

  1. Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing(利用GAN中潜在的空间维度进行实时图像编辑)


图像翻译(Image Translation)

  1. Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation(样式编码:用于图像到图像翻译的StyleGAN编码器)

    paper|code|project


人脸(Face)

  1. A 3D GAN for Improved Large-pose Facial Recognition(用于改善大姿势面部识别的3D GAN)

    paper


目标跟踪(Object Tracking)

  1. Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking(多目标跟踪的概率小波计分和修复)

    paper

  2. Rotation Equivariant Siamese Networks for Tracking(旋转等距连体网络进行跟踪)

    paper


医学影像(Medical Imaging)

  1. 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient Management(用于胰腺肿块分割,诊断和定量患者管理的3D图形解剖学几何集成网络)

  2. Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging Studies(深部病变追踪器:在4D纵向成像研究中监控病变)

    paper

  3. Automatic Vertebra Localization and Identification in CT by Spine Rectification and Anatomically-constrained Optimization(通过脊柱矫正和解剖学约束优化在CT中自动进行椎骨定位和识别)

    paper


神经网络架构搜索(NAS)

  1. AttentiveNAS: Improving Neural Architecture Search via Attentive(通过注意力改善神经架构搜索)

    paper

  2. ReNAS: Relativistic Evaluation of Neural Architecture Search(NAS predictor当中ranking loss的重要性)

    paper

  3. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens(降低NAS的成本)

    paper


GAN/生成式/对抗式(GAN/Generative/Adversarial)

  1. Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing(利用GAN中潜在的空间维度进行实时图像编辑)

  2. Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs(Hijack-GAN:意外使用经过预训练的黑匣子GAN)

    paper

  3. Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation(样式编码:用于图像到图像翻译的StyleGAN编码器)

    paper|code|project

  4. A 3D GAN for Improved Large-pose Facial Recognition(用于改善大姿势面部识别的3D GAN)

    paper


图像复原(Image Restoration)

  1. Multi-Stage Progressive Image Restoration(多阶段渐进式图像复原)

    paper|code


超分辨率(Super Resolution)

  1. Data-Free Knowledge Distillation For Image Super-Resolution(DAFL算法的SR版本)

  2. AdderSR: Towards Energy Efficient Image Super-Resolution(将加法网路应用到图像超分辨率中)

    paper|code

    解读:华为开源加法神经网络


三维视觉(3D Vision)

  1. 3D CNNs with Adaptive Temporal Feature Resolutions(具有自适应时间特征分辨率的3D CNN)

    paper

三维点云(3D Point Cloud)

  1. PREDATOR: Registration of 3D Point Clouds with Low Overlap(预测器:低重叠的3D点云的配准)

    paper|code|project

三维重建(3D Reconstruction)

  1. PCLs: Geometry-aware Neural Reconstruction of 3D Pose with Perspective Crop Layers(具有透视作物层的3D姿势的几何感知神经重建)

    paper


模型压缩(Model Compression)

  1. Manifold Regularized Dynamic Network Pruning(动态剪枝的过程中考虑样本复杂度与网络复杂度的约束)

  2. Learning Student Networks in the Wild(一种不需要原始训练数据的模型压缩和加速技术)

    paper|code

    解读:华为诺亚方舟实验室提出无需数据网络压缩技术

知识蒸馏(Knowledge Distillation)

Multiresolution Knowledge Distillation for Anomaly Detection(用于异常检测的多分辨率知识蒸馏)

paper

Distilling Object Detectors via Decoupled Features(前景背景分离的蒸馏技术)


神经网络架构(Neural Network Structure)

Rethinking Channel Dimensions for Efficient Model Design(重新考虑通道尺寸以进行有效的模型设计)

paper|code

Inverting the Inherence of Convolution for Visual Recognition(颠倒卷积的固有性以进行视觉识别)

RepVGG: Making VGG-style ConvNets Great Again

paper|code

解读:RepVGG:极简架构,SOTA性能,让VGG式模型再次伟大

Transformer

Transformer Interpretability Beyond Attention Visualization(注意力可视化之外的Transformer可解释性)

paper|code

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

paper

解读:无监督预训练检测器

Pre-Trained Image Processing Transformer(底层视觉预训练模型)

paper

图神经网络(GNN)

Sequential Graph Convolutional Network for Active Learning(主动学习的顺序图卷积网络)

paper


数据处理(Data Processing)

数据增广(Data Augmentation)

  1. KeepAugment: A Simple Information-Preserving Data Augmentation(一种简单的保存信息的数据扩充)

    paper

归一化(Batch Normalization)

  1. Meta Batch-Instance Normalization for Generalizable Person Re-Identification(通用批处理人员重新标识的元批实例规范化)

    paper

  2. Representative Batch Normalization with Feature Calibration(具有特征校准功能的代表性批量归一化)

图像聚类(Image Clustering)

  1. Reconsidering Representation Alignment for Multi-view Clustering(重新考虑多视图聚类的表示对齐方式)


模型评估(Model Evaluation)

  1. Are Labels Necessary for Classifier Accuracy Evaluation?(测试集没有标签,我们可以拿来测试模型吗?)

    paper|解读


数据集(Database)

  1. Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels(重新标记ImageNet:从单标签到多标签,从全局标签到本地标签)

    paper|code


主动学习(Active Learning)

  1. Multiple Instance Active Learning for Object Detection(用于对象检测的多实例主动学习)

    paper|code

  2. Sequential Graph Convolutional Network for Active Learning(主动学习的顺序图卷积网络)

    paper


小样本学习(Few-shot Learning)

  1. Few-shot Open-set Recognition by Transformation Consistency(转换一致性很少的开放集识别)

  2. Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning(探索少量学习的不变表示形式和等变表示形式的互补强度)


持续学习(Continual Learning/Life-long Learning)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples(不断学习与多样本的记忆)

Learning the Superpixel in a Non-iterative and Lifelong Manner(以非迭代和终身的方式学习超像素)



Diversifying Sample Generation for Data-Free Quantization(多样化的样本生成,实现无数据量化)

paper

Domain Generalization via Inference-time Label-Preserving Target Projections(通过保留推理时间的目标投影进行域泛化)

paper

DeRF: Decomposed Radiance Fields(分解的辐射场)

project

Vab-AL: Incorporating Class Imbalance and Difficulty with Variational Bayes for Active Learning(将类不平衡和复杂性与变式贝叶斯结合起来进行主动学习)

paper

Densely connected multidilated convolutional networks for dense prediction tasks(密集连接的多重卷积网络,用于密集的预测任务)

paper

VirTex: Learning Visual Representations from Textual Annotations(从文本注释中学习视觉表示)

paper|code

Improving Unsupervised Image Clustering With Robust Learning(通过鲁棒学习改善无监督图像聚类)

paper|code

Weakly-supervised Grounded Visual Question Answering using Capsules(使用胶囊进行弱监督的地面视觉问答)

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation(FLAVR:用于快速帧插值的与流无关的视频表示)

paper|code|project

Probabilistic Embeddings for Cross-Modal Retrieval(跨模态检索的概率嵌入)

paper

Self-supervised Simultaneous Multi-Step Prediction of Road Dynamics and Cost Map(道路动力学和成本图的自监督式多步同时预测)

IIRC: Incremental Implicitly-Refined Classification(增量式隐式定义的分类)

paper|project

Fair Attribute Classification through Latent Space De-biasing(通过潜在空间去偏的公平属性分类)

paper|code|project

Information-Theoretic Segmentation by Inpainting Error Maximization(修复误差最大化的信息理论分割)

paper

UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pretraining(UC2:通用跨语言跨模态视觉和语言预培训)

Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling(T通过稀疏采样进行视频和语言学习)

paper|code

D-NeRF: Neural Radiance Fields for Dynamic Scenes(D-NeRF:动态场景的神经辐射场)

paper|project

Weakly Supervised Learning of Rigid 3D Scene Flow(刚性3D场景流的弱监督学习)

paper|code|project


2.To do list

  • CVPR2021论文解读
  • CVPR2021 Oral
  • CVPR2021论文分享

你可能感兴趣的:(视觉资源,深度学习,人工智能,机器学习,深度学习,神经网络)