python实现朴素贝叶斯垃圾邮件分类

查看通俗易懂的贝叶斯垃圾邮件分类原理 请点击此处
下载邮件数据 请点击此处

import os
import re
import string
import math
import numpy as np

# 过滤数字
def replace_num(txt_str):
    txt_str = txt_str.replace(r'0', '')
    txt_str = txt_str.replace(r'1', '')
    txt_str = txt_str.replace(r'2', '')
    txt_str = txt_str.replace(r'3', '')
    txt_str = txt_str.replace(r'4', '')
    txt_str = txt_str.replace(r'5', '')
    txt_str = txt_str.replace(r'6', '')
    txt_str = txt_str.replace(r'7', '')
    txt_str = txt_str.replace(r'8', '')
    txt_str = txt_str.replace(r'9', '')
    return txt_str

def get_filtered_str(category):

    email_list = []
    translator = re.compile('[%s]' % re.escape(string.punctuation))

    for curDir, dirs, files in os.walk(f'./email/{category}'):
        for file in files:
            file_name = os.path.join(curDir, file)
            with open(file_name, 'r', encoding='utf-8') as f:
                txt_str = f.read()

                # 全部小写
                txt_str = txt_str.lower()

                # 过滤掉所有符号
                txt_str = translator.sub(' ', txt_str)

                # 过滤掉全部数字
                txt_str = replace_num(txt_str)

                # 把全体的邮件文本 根据换行符把string划分成列表
                txt_str_list = txt_str.splitlines()

                # 把获取的全体单词句子列表转成字符串
                txt_str = ''.join(txt_str_list)
                # print(txt_str)
            email_list.append(txt_str)
    return email_list

def get_dict_spam_dict_w(spam_email_list):
    '''
    :param email_list: 每个邮件过滤后形成字符串,存入email_list
    :param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
    :return:
    '''

    all_email_words = []

    # 用set集合去重
    word_set = set()
    for email_str in spam_email_list:
        # 把每个邮件的文本 变成单词
        email_words = email_str.split(' ')
        # 把每个邮件去重后的列表 存入列表
        all_email_words.append(email_words)
        for word in email_words:
            if(word!=''):
                word_set.add(word)

    # 计算每个垃圾词出现的次数
    word_dict = {}
    for word in word_set:
        # 创建字典元素 并让它的值为1
        word_dict[word] = 0
        # print(f'word={word}')

        # 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
        for email_words in all_email_words:
            for email_word in email_words:
                # print(f'spam_email={email_word}')
                # 把从set中取出的word 和 每个email分词后的word对比看是否相等
                if(word==email_word):
                    word_dict[word] += 1
                    # 找到一个就行了
                    break

    # 计算垃圾词的概率
    # spam_len = len(os.listdir(f'./email/spam'))
    # print(f'spam_len={spam_len}')
    # for word in word_dict:
    #     word_dict[word]  = word_dict[word] / spam_len
    return word_dict

def get_dict_ham_dict_w(spam_email_list,ham_email_list):
    '''
    :param email_list: 每个邮件过滤后形成字符串,存入email_list
    :param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
    :return:
    '''
    all_ham_email_words = []

    # 用set集合去重 得到垃圾邮件的特征w
    word_set = set()

    #获取垃圾邮件特征
    for email_str in spam_email_list:
        # 把每个邮件的文本 变成单词
        email_words = email_str.split(' ')
        for word in email_words:
            if (word != ''):
                word_set.add(word)

    for ham_email_str in ham_email_list:

        # 把每个邮件的文本 变成单词
        ham_email_words = ham_email_str.split(' ')
        # print(f'ham_email_words={ham_email_words}')

        # 把每个邮件分割成单词的 的列表 存入列表
        all_ham_email_words.append(ham_email_words)
    # print(f'all_ham_email_words={all_ham_email_words}')

    # 计算每个垃圾词出现的次数
    word_dict = {}
    for word in word_set:
        # 创建字典元素 并让它的值为1
        word_dict[word] = 0
        # print(f'word={word}')

        # 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
        for email_words in all_ham_email_words:
            # print(f'ham_email_words={email_words}')
            for email_word in email_words:
                # 把从set中取出的word 和 每个email分词后的word对比看是否相等
                # print(f'email_word={email_word}')
                if(word==email_word):
                    word_dict[word] += 1
                    # 找到一个就行了
                    break
    return word_dict

# 获取测试邮件中出现的 垃圾邮件特征
def get_X_c1(spam_w_dict,file_name):

    # 获取测试邮件
    # file_name = './email/spam/25.txt'
    # 过滤文本
    translator = re.compile('[%s]' % re.escape(string.punctuation))
    with open(file_name, 'r', encoding='utf-8') as f:
        txt_str = f.read()

        # 全部小写
        txt_str = txt_str.lower()

        # 过滤掉所有符号
        txt_str = translator.sub(' ', txt_str)

        # 过滤掉全部数字
        txt_str = replace_num(txt_str)

        # 把全体的邮件文本 根据换行符把string划分成列表
        txt_str_list = txt_str.splitlines()

        # 把获取的全体单词句子列表转成字符串
        txt_str = ''.join(txt_str_list)

    # 把句子分成词
    email_words = txt_str.split(' ')

    # 去重
    x_set = set()
    for word in email_words:
        if word!='':
            x_set.add(word)
    # print(f'\ntest_x_set={x_set}')
    spam_len = len(os.listdir(f'./email/spam'))
    # 判断测试邮件的词有哪些是垃圾邮件的特征
    spam_X_num = []
    for xi in x_set:
        for wi in spam_w_dict:
            if xi == wi:
                spam_X_num.append(spam_w_dict[wi])
    # print(f'\nspam_X_num={spam_X_num}')
    w_appear_sum_num = 1
    for num in spam_X_num:
        w_appear_sum_num += num
    # print(f'\nham_w_appear_sum_num={w_appear_sum_num}')
    # 求概率
    w_c1_p = w_appear_sum_num / (spam_len + 2)
    return w_c1_p

# 获取测试邮件中出现的 垃圾邮件特征
def get_X_c2(ham_w_dict,file_name):

    # 过滤文本
    translator = re.compile('[%s]' % re.escape(string.punctuation))
    with open(file_name, 'r', encoding='utf-8') as f:
        txt_str = f.read()

        # 全部小写
        txt_str = txt_str.lower()

        # 过滤掉所有符号
        txt_str = translator.sub(' ', txt_str)

        # 过滤掉全部数字
        txt_str = replace_num(txt_str)

        # 把全体的邮件文本 根据换行符把string划分成列表
        txt_str_list = txt_str.splitlines()

        # 把获取的全体单词句子列表转成字符串
        txt_str = ''.join(txt_str_list)

    # 把句子分成词
    email_words = txt_str.split(' ')

    # 去重
    x_set = set()
    for word in email_words:
        if word!='':
            x_set.add(word)
    # print(f'\ntest_x_set={x_set}')

    # 判断测试邮件的词有哪些是垃圾邮件的特征
    ham_X_num = []
    for xi in x_set:
        for wi in ham_w_dict:
            if xi == wi:
                ham_X_num.append(ham_w_dict[wi])
    # print(f'\nham_X_num={ham_X_num}')

    # 先求分子 所有词出现的总和
    ham_len = len(os.listdir(f'./email/ham'))
    w_appear_sum_num = 1
    for num in ham_X_num:
        w_appear_sum_num += num
    # print(f'\nspam_w_appear_sum_num={w_appear_sum_num}')
    # 求概率
    w_c2_p = w_appear_sum_num / (ham_len+2)
    return w_c2_p

def email_test(spam_w_dict,ham_w_dict):
    for curDir, dirs, files in os.walk(f'./email/test'):
        for file in files:
            file_name = os.path.join(curDir, file)
            print('---------------------------------------------------------------')
            print(f'测试邮件: {file}')
            # 获取条件概率 p(X|c1)
            p_X_c1 = get_X_c1(spam_w_dict,file_name)
            # 获取条件概率 p(X|c2)
            p_X_c2 = get_X_c2(ham_w_dict,file_name)

            # print(f'\nX_c1={p_X_c1}')
            # print(f'\nX_c2={p_X_c2}')

            # #注意:Log之后全部变为负数
            A = np.log(p_X_c1) + np.log(1 / 2)
            B = np.log(p_X_c2) + np.log(1 / 2)

            # 除法会出现问题,-1 / 负分母  结果 < -2/同一个分母
            print(f'p1={A},p2={B}')

            # 因为分母一致,所以只比较 分子即可
            if A > B:
                print('p1>p2,所以是垃圾邮件.')
            if A <= B:
                print('p1)

if __name__=='__main__':

    spam_email_list = get_filtered_str('spam')
    ham_email_list = get_filtered_str('ham')

    spam_w_dict = get_dict_spam_dict_w(spam_email_list)
    ham_w_dict = get_dict_ham_dict_w(spam_email_list,ham_email_list)

    # print(f'\n从垃圾邮件中提取的特征及每个特征出现的邮件数:')
    # print(f'spam_w_dict={spam_w_dict}')

    # print(f'\n普通邮件中垃圾邮件特征出现的邮件数为:')
    # print(f'ham_w_dict={ham_w_dict}')

    email_test(spam_w_dict, ham_w_dict)





你可能感兴趣的:(python,分类,机器学习)