ElasticSearch聚合应该怎么学

大家好,我是咔咔 不期速成,日拱一卒

ElasticSearch致力于搜索的同时,也提供了聚合实时分析数据的功能,聚合可以实现把复杂的数据进行一系列计算后得出我们想要的数据。

虽然聚合的功能与搜索完全不同,但使用的数据结构是完全相同的,因此聚合的执行速度很快,也就是说在一次请求中对相同数据可以同时进行搜索+过滤、分析。

在ElasticSearch中聚合共分为四大类:

Bucket Aggregation:分桶类型,一些列满足特定条件的文档集合
Metric Aggregation:指标分析类型,对数据进行数学运算,例如求最大、小值
Pipeline Aggregation:管道分析类型,已经聚合的结果进行二次聚合
Matix Aggregation:矩阵分析类型,支持对多个字段操作并提供一个结果矩阵
先从简开始,看一下Bucket、Metric这两种类型,Bucket实现的结果就是MySQL中group关键字的使用,Metric则是MySQL中max、min函数的使用。

一、Buckert Aggregation
介绍

通过上图可得知将数据分为了三个桶,第一个桶统计的是身高小于300,第二个桶统计的是身高大于600,第三个桶统计的是身高在300到600之间的,在这个案例中就是根据不同的身高分到不同的桶中。

使用聚合分析机制还可以按照年龄、地理位置、性别、薪资范围、订单增长情况、工作岗位分布等。只要有一定共同点的数据都可使用聚合进行归档处理。

常见的Bucket分桶策略

terms:按照term来分桶,如果是text类型则会按照分词后的结果进行分桶
range:指定数值的范围来设定分桶规则
data range:指定日期的范围来设定分桶规则
histogram:固定的间隔来来设定分桶规则
data histogram:针对日期的直方图或柱状图
Terms
根据目的地进行分桶

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"destcountry_term":{
  "terms": {
    "field": "DestCountry"
  }
}

},
"profile":"true"
}
从返回结果中看到根据目的地将航班信息进行了归类处理,同时也会发现在ElasticSearch中如果不手动定义size值都会默认只返回10条结果

"aggregations" : {

"destcountry_term" : {
  "doc_count_error_upper_bound" : 0,
  "sum_other_doc_count" : 3187,
  "buckets" : [
    {
      "key" : "IT",
      "doc_count" : 2371
    },
    {
      "key" : "US",
      "doc_count" : 1987
    },
    {
      "key" : "CN",
      "doc_count" : 1096
    },
    {
      "key" : "CA",
      "doc_count" : 944
    },
    {
      "key" : "JP",
      "doc_count" : 774
    },
    {
      "key" : "RU",
      "doc_count" : 739
    },
    {
      "key" : "CH",
      "doc_count" : 691
    },
    {
      "key" : "GB",
      "doc_count" : 449
    },
    {
      "key" : "AU",
      "doc_count" : 416
    },
    {
      "key" : "PL",
      "doc_count" : 405
    }
  ]
}

}
Range
想要查询平均价格在300以下、300~600之间、大于600的案例

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"avgticketprice_range":{
  "range": {
    "field": "AvgTicketPrice",
    "ranges": [
      {"to":300},
      {"from":300,"to":600},
      {"from":600}
    ]
  }
}

}
}
返回结果如下,可以三条结果都根据不同的区间设置了key值

"aggregations" : {

"avgticketprice_range" : {
  "buckets" : [
    {
      "key" : "*-300.0",
      "to" : 300.0,
      "doc_count" : 1816
    },
    {
      "key" : "300.0-600.0",
      "from" : 300.0,
      "to" : 600.0,
      "doc_count" : 4115
    },
    {
      "key" : "600.0-*",
      "from" : 600.0,
      "doc_count" : 7128
    }
  ]
}

}
可以通过设置keyed:true,使每个区间都返回一个特定的名字

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"avgticketprice_range":{
  "range": {
    "field": "AvgTicketPrice",
    "keyed":"true",
    "ranges": [
      {"to":300},
      {"from":300,"to":600},
      {"from":600}
    ]
  }
}

}
}
可以好好的跟上一个案例对比一下区别

"aggregations" : {

"avgticketprice_range" : {
  "buckets" : {
    "*-300.0" : {
      "to" : 300.0,
      "doc_count" : 1816
    },
    "300.0-600.0" : {
      "from" : 300.0,
      "to" : 600.0,
      "doc_count" : 4115
    },
    "600.0-*" : {
      "from" : 600.0,
      "doc_count" : 7128
    }
  }
}

}
当然也可以指定区间的名字

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"avgticketprice_range":{
  "range": {
    "field": "AvgTicketPrice",
    "keyed":"true",
    "ranges": [
      {"key":"小于300","to":300},
      {"key":"300到600之间","from":300,"to":600},
      {"key":"大于600","from":600}
    ]
  }
}

}
}
返回结果

"aggregations" : {

"avgticketprice_range" : {
  "buckets" : {
    "小于300" : {
      "to" : 300.0,
      "doc_count" : 1816
    },
    "300到600之间" : {
      "from" : 300.0,
      "to" : 600.0,
      "doc_count" : 4115
    },
    "大于600" : {
      "from" : 600.0,
      "doc_count" : 7128
    }
  }
}

}
Data Range
通过指定日期的范围来设定分桶规则,如对timestamp字段按照设定的时间段来分桶。

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"data_range_timestamp":{
  "date_range":{
    "field":"timestamp",
    "format":"yyyy-MM",
    "ranges":[
      {"from":"2022-01","to":"2022-02"},
      {"from":"2022-02","to":"2022-03"}
    ]
  }
}

}
}
返回结果,思考一下如果想要设置固定的key值应该怎么设置呢?还有要注意的是日期格式yyyy-MM-dd HH:mm:ss

"aggregations" : {

"data_range_timestamp" : {
  "buckets" : [
    {
      "key" : "2022-01-2022-02",
      "from" : 1.6409952E12,
      "from_as_string" : "2022-01",
      "to" : 1.6436736E12,
      "to_as_string" : "2022-02",
      "doc_count" : 9580
    },
    {
      "key" : "2022-02-2022-03",
      "from" : 1.6436736E12,
      "from_as_string" : "2022-02",
      "to" : 1.6460928E12,
      "to_as_string" : "2022-03",
      "doc_count" : 1837
    }
  ]
}

}
Historgram
直方图,以固定间隔的策略来分割数据,如对AvgTicketPrice字段按照100的间隔进行分桶

interval :每次间隔50
min_doc_count :存在的文档数最少是0条
extended_bounds :此值只有当min_doc_count 为0时才具有意义
在实现时你会发现extended_bounds不过滤桶。extended_bounds.min高于从文档中提取的值,那么文档仍然会规定第一个存储段将是什么(对于extended_bounds.max和最后一个存储段也是如此)。为了过滤桶,您应该将直方图聚合嵌套在范围过滤器聚合中,并使用适当的从/到设置

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"price_histogram":{
  "histogram": {
    "field": "AvgTicketPrice",
    "interval": 50,
    "min_doc_count":"0",
    "extended_bounds":{
      "min":0,
      "max":600
    }
  }
}

}
}
返回结果

"aggregations" : {

"price_histogram" : {
  "buckets" : [
    {
      "key" : 0.0,
      "doc_count" : 0
    },
    {
      "key" : 50.0,
      "doc_count" : 0
    },
    {
      "key" : 100.0,
      "doc_count" : 380
    },
    {
      "key" : 150.0,
      "doc_count" : 369
    },
    {
      "key" : 200.0,
      "doc_count" : 398
    }
  ]
}

}
Data histogram
针对日期的直方图或者柱状图,是时序数据分析中常用的聚合分析类型,如对timestamp字段按照月的间隔进行分桶

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"timestamp_data_histogram":{
  "date_histogram": {
    "field": "timestamp",
    "interval": "month",
    "min_doc_count": 0,
    "format": "yyyy-MM-dd",
    "extended_bounds": {
      "min": "2021-10-10",
      "max": "2022-01-19"
    }
  }
}

}
}
返回结果

"aggregations" : {

"timestamp_data_histogram" : {
  "buckets" : [
    {
      "key_as_string" : "2021-10-01",
      "key" : 1633046400000,
      "doc_count" : 0
    },
    {
      "key_as_string" : "2021-11-01",
      "key" : 1635724800000,
      "doc_count" : 0
    },
    {
      "key_as_string" : "2021-12-01",
      "key" : 1638316800000,
      "doc_count" : 1642
    },
    {
      "key_as_string" : "2022-01-01",
      "key" : 1640995200000,
      "doc_count" : 9580
    },
    {
      "key_as_string" : "2022-02-01",
      "key" : 1643673600000,
      "doc_count" : 1837
    }
  ]
}

}
二、嵌套查询
上文中列举了五种分桶的实现,在实际开发中只是单一的进行聚合查询是非常少的,大多情况下都是会进行嵌套操作。

先根据机票进行分桶后,再对分桶后的数据取总数、最小值、最大值、平均值、总和

post /kibana_sample_data_flights/_search
{
"size":0,
"aggs":{

"price_range":{
  "range": {
    "field": "AvgTicketPrice",
    "ranges": [
      {"to":300},
      {"from":300,"to":600},
      {"from":600}
    ]
  },
  "aggs":{
    "price_status":{
      "stats": {
        "field": "AvgTicketPrice"
      }
    }
  }
}

}
}
返回结果(返回结果截取显示了)

"aggregations" : {

"price_range" : {
  "buckets" : [
    {
      "key" : "*-300.0",
      "to" : 300.0,
      "doc_count" : 1816,
      "price_status" : {
        "count" : 1816,
        "min" : 100.0205307006836,
        "max" : 299.9529113769531,
        "avg" : 212.5348257619379,
        "sum" : 385963.2435836792
      }
    }
  ]
}

}
还有更多的操作等待我们去挖掘,先把基础的搞定,不期速成,日拱一卒

坚持学习、坚持写作、坚持分享是咔咔从业以来所秉持的信念。愿文章在偌大的互联网上能给你带来一点帮助,我是咔咔,下期见。

ElasticSearch聚合应该怎么学_第1张图片

你可能感兴趣的:(elasticsearch)