Pytorch之反向传播

神经网络中,最基本的优化方式就是反向传播 本文介绍了Pytorch中一个简单的例子:

import torch
import torch.nn as nn
from torch.nn import MaxPool2d, ReLU, Sigmoid, Linear, Conv2d, Flatten, Sequential
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter as Sum

root = r'C:\Users\15715\Desktop\Programs\Python\深度学习\pythonProject\dataset_CIFAR10'
dataset = torchvision.datasets.CIFAR10(root=root, train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=1)


class Standard(nn.Module):
    def __init__(self):
        super(Standard, self).__init__()
        # self.conv1 = Conv2d(3, 32, 5, padding=2)  # 第一个卷积层  in通道,out通道,kernel,padding stride(default=1)
        # self.maxpool1 = MaxPool2d(2)  # 第一个池化层 kernel
        # self.conv2 = Conv2d(32, 32, 5, padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32, 64, 5, padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()  # 展平
        # # 实质有2个线性层
        # self.linear1 = Linear(1024, 64)
        # self.linear2 = Linear(64, 10)
        # 上述被替代为了下面的Sequential

        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x


mc = Standard()
# print(mc)
loss = nn.L1Loss()
optim = torch.optim.SGD(mc.parameters(), lr=0.01)  # parameters 学习速率


epoch = 10
for x in range(epoch):
    # 学习一轮
    runloss = 0.0
    for data in dataloader:
        img, target = data   # output是实际输出,target是理想输出,即真实标签值
        output = mc(img)
        # print(output)
        # print(target)
        res = loss(output,target)
        # print(res)
        # 反向传播
        optim.zero_grad() # 将之前的梯度置为0,避免影响本次的优化
        res.backward()  # 获取梯度
        optim.step()  # 优化
        # print(res)
        runloss = runloss + res
    print('1 epch done')
    # 宏观上查看误差的减小
    print(runloss)
    print('')

运行结果为:

1 epch done
tensor(25982.2188, grad_fn=<AddBackward0>)
1 epch done
tensor(23803.2637, grad_fn=<AddBackward0>)
1 epch done
tensor(23197.8145, grad_fn=<AddBackward0>)
1 epch done
tensor(22575.0508, grad_fn=<AddBackward0>)

备注:数据集来源于官网(cifar10)
模型就是cifar10的模型
Pytorch之反向传播_第1张图片

你可能感兴趣的:(小项目,pytorch,深度学习,神经网络)