C++单例模式双重锁漏洞:内存读写的乱序执行(编译器问题)

说明

首先解释为什么会出现这个问题:在懒汉模式下存在多线程不安全的问题(饿汉模式是线程安全的),为了解决这个问题,首先采用的是利用C++中lock_guard类,这个类实现原理采用RAII,不用手动管理unlock。

class singleton {
private:
    singleton() {}
    static singleton *p;
    static mutex lock_;
public:
    static singleton *instance();
};

singleton *singleton::p = nullptr;

singleton* singleton::instance() {
    lock_guard guard(lock_);
    if (p == nullptr)
        p = new singleton();
    return p;
}

解决了懒汉模式的这个问题,又出现了性能问题:每次执行都会有加锁释放锁, 而这个步骤只有在第一次new Singleton()才是有必要的.

因此引出DCL

双重检查锁模式

class singleton {
private:
    singleton() {}

    static singleton *p;
    static mutex lock_;
public:
    singleton *instance();

    // 实现一个内嵌垃圾回收类
    class CGarbo
    {
    public:
        ~CGarbo()
        {
            if(singleton::p)
                delete singleton::p;
        }
    };
    // 2022-4-21
    // 所谓的垃圾回收,就是定义一个静态的类,类里面只有一个方法,这个方法检查singleton::p是否是空,不是空,执行delete
    // 由于是静态的方法,程序会自动的释放该对象,从而达到自动回收的机制。
    static CGarbo Garbo; // 定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数从而释放单例对象
};

singleton *singleton::p = nullptr;
singleton::CGarbo Garbo;

singleton* singleton::instance() {
    if (p == nullptr) {
        lock_guard guard(lock_);
        if (p == nullptr)
            p = new singleton();
    }
    return p;
}

注意我们的标题是单例模式双重锁漏洞

DCLP的关键在于,大多数对instance的调用会看到p是非空的,因此甚至不用尝试去初始化它。因此,DCLP在尝试获取锁之前检查p是否为空。只有当检查成功(也就是p还没有被初始化)时才会去获得锁,然后再次检查p是否仍然为空(因此命名为双重检查锁)。第二次检查是必要,因为就像我们刚刚看到的,很有可能另一个线程偶然在第一次检查之后,获得锁成功之前初始化p。

看起来上述代码非常美好,可是过了相当一段时间后,才发现这个漏洞,原因是:内存读写的乱序执行(编译器问题)。

再次考虑初始化p的那一行:

p = new singleton;
这条语句会导致三个事情的发生:

分配能够存储singleton对象的内存;
在被分配的内存中构造一个singleton对象;
让p指向这块被分配的内存。
可能会认为这三个步骤是按顺序执行的,但实际上只能确定步骤1是最先执行的,步骤2,3却不一定。问题就出现在这。

线程A调用instance,执行第一次p的测试,获得锁,按照1,3,执行,然后被挂起。此时p是非空的,但是p指向的内存中还没有Singleton对象被构造。
线程B调用instance,判定p非空, 将其返回给instance的调用者。调用者对指针解引用以获得singleton,噢,一个还没有被构造出的对象。bug就出现了。
DCLP能够良好的工作仅当步骤一和二在步骤三之前被执行,但是并没有方法在C或C++中表达这种限制。这就像是插在DCLP心脏上的一把匕首:我们需要在相对指令顺序上定义限制,但是我们的语言没有给出表达这种限制的方法。

第一种解决方法:memory barrier指令

第一种实现:

基于operator new+placement new,遵循1,2,3执行顺序依次编写代码。

// method 1 operator new + placement new
singleton *instance() {
    if (p == nullptr) {
        lock_guard guard(lock_);
        if (p == nullptr) {
            singleton *tmp = static_cast(operator new(sizeof(singleton)));
            new(tmp)singleton();
            p = tmp;
        }
    }
    return p;
}

第二种实现:

基于直接嵌入ASM汇编指令mfence,uninx的barrier宏也是通过该指令实现的。

#define barrier() __asm__ volatile ("lwsync")
singleton *singleton::instance() {
    if (p == nullptr) {
        lock_guard guard(lock_);
        barrier();
        if (p == nullptr) {
            p = new singleton();
        }
    }
    return p;
}

你可能感兴趣的:(c++)