<数据结构>链式二叉树的基本操作

在这里插入图片描述

文章目录

  • 1. 前置说明
  • 2. 二叉树的遍历
    • 2.1 二叉树前序遍历
    • 2.2 二叉树中序遍历
    • 2.3 二叉树后序遍历
    • 2.4 二叉树层序遍历
  • 3. 二叉树节点个数 (引进分治思想)
  • 4. 二叉树叶子节点个数
  • 5. 二叉树第k层节点个数
  • 6. 二叉树层数
  • 7. 二叉树查找值为x的节点
  • 8. 判断是否为完全二叉树
  • 9. 二叉树的销毁

目前在不断更新<数据结构>的知识总结,已经更新完了,未来我会系统地更新等内容。

想要一步步稳扎稳打,学习编程的小伙伴可以关注我或者订阅专栏,文章都是免费的,不要错过这一个提升自己的机会!

普通二叉树的增删查改没有价值,如果是为了单纯存储数据,不如使用线性表

我们这一节的学习是为了更好的控制它的结构,为之后学习更复杂的搜索二叉树打基础。并且很多二叉树的OJ算法题都出在普通二叉树上。

1. 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二
叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树
操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;

typedef struct BinaryTreeNode
{
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	BTDataType data;
}BTNode;

BTNode* BuyBTNode(BTDataType x)
{
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	assert(node);
	node->data = x;
	node->left = node->right = NULL;
	return node;
}

BTNode* CreateBinaryTree()
{
	BTNode* node1 = BuyBTNode(1);
	BTNode* node2 = BuyBTNode(2);
	BTNode* node3 = BuyBTNode(3);
	BTNode* node4 = BuyBTNode(4);
	BTNode* node5 = BuyBTNode(5);
	BTNode* node6 = BuyBTNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
再看二叉树基本操作前,再回顾下二叉树的概念,
二叉树是:

  1. 空树

  2. 非空:根节点,根节点的左子树、根节点的右子树组成的

<数据结构>链式二叉树的基本操作_第1张图片

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的

2. 二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。

遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

<数据结构>链式二叉树的基本操作_第2张图片

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1️⃣前序遍历——访问根结点的操作发生在遍历其左右子树之前。(根➡️左子树➡️右子树)

2️⃣中序遍历——访问根结点的操作发生在遍历其左右子树之中(间)。(左子树➡️根➡️右子树)

3️⃣后序遍历——访问根结点的操作发生在遍历其左右子树之后。 (左子树➡️右子树➡️根)

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

除了深度优先遍历(DFS):先序遍历、中序遍历、后序遍历外,还可以对二叉树进行广度优先遍历(BFS):层序遍历。

层序遍历——自上而下,自左至右逐层访问

<数据结构>链式二叉树的基本操作_第3张图片

2.1 二叉树前序遍历

按橙色序号顺序看,效果更好!

<数据结构>链式二叉树的基本操作_第4张图片

顺序:根➡️左子树➡️右子树

解析:(相同颜色代表遍历同一个根的左子树和右子树,搭配上面的图解和下面的动图一同食用效果更佳<( ̄︶ ̄)>)

根(1)

根(1)的左子树(2)

此时2成了新的根,根(2)的左子树(3)

此时3成了新的根,根(3)的左子树(NULL)

回退,访问根(3)的右子树(NULL)

回退,访问根(2)的右子树(NULL)

回退,访问根(1)的右子树(4)

此时4成了新的根,根(4)的左子树(5)

此时5成了新的根,根(5)的左子树(NULL)

回退,访问根(5)的右子树(NULL)

回退,访问根(4)的右子树(6)

此时6成了新的根,根(6)的左子树(NULL)

回退,访问根(6)的右子树(NULL)

回退到6,再回退到4,最后整棵树都遍历完毕了

<数据结构>链式二叉树的基本操作_第5张图片

image-20220412204822876

前序遍历结果:1 2 3 4 5 6

如果还不理解建议看看递归的知识复习一下,c语言自学教程——函数是我好久之前写的,最后一部分详细地讲了递归

void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	printf("%d ", root->data);//根
	PreOrder(root->left);//左子树
	PreOrder(root->right);//右子树
}

2.2 二叉树中序遍历

你已经是个大人了,要学会自己分析、理解啦。

中序和后序遍历跟前序遍历的思路一模二样,在这就不详细画图解释咯。 (*•̀ㅂ•́)و

顺序:左子树➡️根➡️右子树

<数据结构>链式二叉树的基本操作_第6张图片 image-20220412205419631

中序遍历结果:3 2 1 5 4 6

void InOrder(BTNode* root)//中序
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

2.3 二叉树后序遍历

顺序:左子树➡️右子树➡️根

<数据结构>链式二叉树的基本操作_第7张图片 image-20220412205442506

后序遍历结果:3 2 5 6 4 1

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	InOrder(root->right);
	printf("%d ", root->data);
}

2.4 二叉树层序遍历

设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

<数据结构>链式二叉树的基本操作_第8张图片

思路:先把根入队列,运用队列先进先出的性质,上一层的节点出的时候,带下一层的节点进去(在节点不为空的情况下‼️)。

<数据结构>链式二叉树的基本操作_第9张图片

层序遍历结果:A B C D E F G H I

void LevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);

	if (root)
	{
		QueuePush(&q, root);
	}

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		printf("%d ", front->data);

		if (front->left)
		{
			QueuePush(&q, front->left);
		}
		if (front->right)
		{
			QueuePush(&q, front->right);
		}
	}
	QueueDestory(&q);
}

3. 二叉树节点个数 (引进分治思想)

方法一:(遍历+计数)

遍历中会新建栈帧,每个栈帧都定义一个count没法加到一起,所以定义一个全局变量、或静态变量

int count = 0;//全局变量
//思想:遍历+计数
int BTreeSize(BTNode* root)
{
	if (root == NULL)
		return;

	count++;
	BTreeSize(root->left);
	BTreeSize(root->right);
	return count;
}

int main()
{   
	count = 0;
	printf("size:%d\n", BTreeSize(tree));
	count = 0;
	printf("size:%d\n", BTreeSize(tree));
}

缺点:多次调用count会累加,每次调用还得初始化一次count(还会有线程安全的问题,这个以后linux学了大家就知道了)

改进版:传变量地址

//思想:遍历+计数
void BTreeSize(BTNode* root, int* pCount)
{
	if (root == NULL)
		return;
	(*pCount)++;
	BTreeSize(root->left, pCount);
	BTreeSize(root->right, pCount);
}

int main()
{   
	int count1 = 0;
	BTreeSize(tree, &count1);
	printf("size:%d\n", count1);
}

方法二:(分治:把复杂问题分成更小规模子问题···直到子问题不可再分割,能直接能出结果)

思路:分治(超级套娃)

1️⃣空数,最小规模的子问题,节点个数返回0

2️⃣非空,左子树节点个数+右子树节点个数+1(自己)

图解:

<数据结构>链式二叉树的基本操作_第10张图片

//思想:分治
int BTreeSize(BTNode* root)
{
	return root == NULL ? 0 : BTreeSize(root->left) + BTreeSize(root->right) + 1;
}

4. 二叉树叶子节点个数

思路:叶子节点个数 = 左子树的叶子节点 + 右子树的叶子节点

<数据结构>链式二叉树的基本操作_第11张图片

int BTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
    
    //判断是否为叶子节点
	if (root->left == NULL && root->right == NULL)
		return 1;
    
	return BTreeLeafSize(root->left) + BTreeLeafSize(root->right);
}

5. 二叉树第k层节点个数

不想画图了╮(๑•́ ₃•̀๑)╭,自己尝试画画吧

假如我要求第三层的节点个数,怎么才能知道那是第三层呢?

我可以在第一层求它下下层的节点个数

我可以在第二层求它下一层的节点个数

就可以转换成求第一层向下k-1层的节点个数

思想:

1️⃣空数,返回0

2️⃣非空,且k == 1,返回1

3️⃣非空,且k > 1,转换成左子树k-1层节点个数 + 右子树k-1层节点个数

//第k层节点个数
int BTreeLevelSize(BTNode* root, int k)
{
	assert(k >= 1);
    
	if (root == NULL)
		return 0;
    
	if (k == 1)
		return 1;
    
	return BTreeLevelSize(root->left, k - 1) + BTreeLevelSize(root->right, k - 1);
}

6. 二叉树层数

思路:层数 = 左子树高度右子树高度 中大的那个+1

int BTreeDepth(BTNode* root)
{
	if (root == NULL)
		return 0;
    
	int leftDepth = BTreeDepth(root->left);
	int rightDepth = BTreeDepth(root->right);
    
	return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

7. 二叉树查找值为x的节点

思路:从根开始找,按照前序遍历顺序找,找到就返回地址,找不到就返回NULL

BTNode* BTFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;

	if (root->data == x)
		return root;

	BTNode* ret1 = BTFind(root->left, x);
	if (ret1)
		return ret1;

	BTNode* ret2 = BTFind(root->right, x);
	if (ret2)
		return ret2;

	return NULL;
}

8. 判断是否为完全二叉树

还记得上面写的层序遍历吗?

我们要运用它巧妙地解决这道题。

思路:

层序遍历,空节点也入队列、出队列

当出到第一个NULL时停止入队列,只出队列

判断NULL后是否全为NULL,还是说其中有节点的值乱入(下图红色部分)

<数据结构>链式二叉树的基本操作_第12张图片
//是否为完全二叉树
//层序遍历,空节点也出,判断空之后是否都为空
bool BTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);

	if (root)
	{
		QueuePush(&q, root);
	}

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		//出到空,就判断后续
		if (front == NULL)
			break;

		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
	}

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		//出到非空——不是完全二叉树
		if (front)
			return false;
	}
	QueueDestory(&q);
	return true;
}

9. 二叉树的销毁

玩完之后要记得销毁哦!

想一想,能不能从根节点开始销毁呢?

不能,否则就找不到下面的节点了

所以,我们要用后续遍历的顺序来销毁,最后销毁根节点

void BTDestory(BTNode* root)
{
	if (root == NULL)
		return;

	BTDestory(root->left);
	BTDestory(root->right);
	free(root);
}

小结:
这节的内容难度又上了一个台阶,考察的不仅是对数据结构的理解,还有c语言阶段对递归的理解。
加油哦,就算走得慢也比原地踏步好。

你可能感兴趣的:(自学教程,数据结构(c语言实现),c语言,数据结构)