前言
增加了论文中的余弦退火下降方式。如图所示:
学习率是深度学习中非常重要的一环,好好学习吧!
为什么要调控学习率
在深度学习中,学习率的调整非常重要。
学习率大有如下优点:
1、加快学习速率。
2、帮助跳出局部最优值。
但存在如下缺点:
1、导致模型训练不收敛。
2、单单使用大学习率容易导致模型不精确。
学习率小有如下优点:
1、帮助模型收敛,有助于模型细化。
2、提高模型精度。
但存在如下缺点:
1、无法跳出局部最优值。
2、收敛缓慢。
学习率大和学习率小的功能是几乎相反的。因此我们适当的调整学习率,才可以最大程度的提高训练性能。
下降方式汇总
1、阶层性下降
在Keras当中,常用ReduceLROnPlateau函数实现阶层性下降。阶层性下降指的就是学习率会突然变为原来的1/2或者1/10。
使用ReduceLROnPlateau可以指定某一项指标不继续下降后,比如说验证集的loss、训练集的loss等,突然下降学习率,变为原来的1/2或者1/10。
ReduceLROnPlateau的主要参数有:
1、factor:在某一项指标不继续下降后学习率下降的比率。
2、patience:在某一项指标不继续下降几个时代后,学习率开始下降。
# 导入ReduceLROnPlateau from keras.callbacks import ReduceLROnPlateau # 定义ReduceLROnPlateau reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1) # 使用ReduceLROnPlateau model.fit(X_train, Y_train, callbacks=[reduce_lr])
2、指数型下降
在Keras当中,我没有找到特别好的Callback直接实现指数型下降,于是利用Callback类实现了一个。
指数型下降指的就是学习率会随着指数函数不断下降。
具体公式如下:
1、learning_rate指的是当前的学习率。
2、learning_rate_base指的是基础学习率。
3、decay_rate指的是衰减系数。
效果如图所示:
实现方式如下,利用Callback实现,与普通的ReduceLROnPlateau调用方式类似:
import numpy as np import matplotlib.pyplot as plt import keras from keras import backend as K from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D from keras.models import Model def exponent(global_epoch, learning_rate_base, decay_rate, min_learn_rate=0, ): learning_rate = learning_rate_base * pow(decay_rate, global_epoch) learning_rate = max(learning_rate,min_learn_rate) return learning_rate class ExponentDecayScheduler(keras.callbacks.Callback): """ 继承Callback,实现对学习率的调度 """ def __init__(self, learning_rate_base, decay_rate, global_epoch_init=0, min_learn_rate=0, verbose=0): super(ExponentDecayScheduler, self).__init__() # 基础的学习率 self.learning_rate_base = learning_rate_base # 全局初始化epoch self.global_epoch = global_epoch_init self.decay_rate = decay_rate # 参数显示 self.verbose = verbose # learning_rates用于记录每次更新后的学习率,方便图形化观察 self.min_learn_rate = min_learn_rate self.learning_rates = [] def on_epoch_end(self, epochs ,logs=None): self.global_epoch = self.global_epoch + 1 lr = K.get_value(self.model.optimizer.lr) self.learning_rates.append(lr) #更新学习率 def on_epoch_begin(self, batch, logs=None): lr = exponent(global_epoch=self.global_epoch, learning_rate_base=self.learning_rate_base, decay_rate = self.decay_rate, min_learn_rate = self.min_learn_rate) K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nBatch %05d: setting learning ' 'rate to %s.' % (self.global_epoch + 1, lr)) # 载入Mnist手写数据集 mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = np.expand_dims(x_train,-1) x_test = np.expand_dims(x_test,-1) #-----------------------------# # 创建模型 #-----------------------------# inputs = Input([28,28,1]) x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Flatten()(x) x = Dense(1024)(x) x = Dense(256)(x) out = Dense(10, activation='softmax')(x) model = Model(inputs,out) # 设定优化器,loss,计算准确率 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 设置训练参数 epochs = 10 init_epoch = 0 # 每一次训练使用多少个Batch batch_size = 31 # 最大学习率 learning_rate_base = 1e-3 sample_count = len(x_train) # 学习率 exponent_lr = ExponentDecayScheduler(learning_rate_base = learning_rate_base, global_epoch_init = init_epoch, decay_rate = 0.9, min_learn_rate = 1e-6 ) # 利用fit进行训练 model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=1, callbacks=[exponent_lr]) plt.plot(exponent_lr.learning_rates) plt.xlabel('Step', fontsize=20) plt.ylabel('lr', fontsize=20) plt.axis([0, epochs, 0, learning_rate_base*1.1]) plt.xticks(np.arange(0, epochs, 1)) plt.grid() plt.title('lr decay with exponent', fontsize=20) plt.show()
3、余弦退火衰减
余弦退火衰减法,学习率会先上升再下降,这是退火优化法的思想。(关于什么是退火算法可以百度。)
上升的时候使用线性上升,下降的时候模拟cos函数下降。
效果如图所示:
余弦退火衰减有几个比较必要的参数:
1、learning_rate_base:学习率最高值。
2、warmup_learning_rate:最开始的学习率。
3、warmup_steps:多少步长后到达顶峰值。
实现方式如下,利用Callback实现,与普通的ReduceLROnPlateau调用方式类似:
import numpy as np import matplotlib.pyplot as plt import keras from keras import backend as K from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D from keras.models import Model def cosine_decay_with_warmup(global_step, learning_rate_base, total_steps, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, min_learn_rate=0, ): """ 参数: global_step: 上面定义的Tcur,记录当前执行的步数。 learning_rate_base:预先设置的学习率,当warm_up阶段学习率增加到learning_rate_base,就开始学习率下降。 total_steps: 是总的训练的步数,等于epoch*sample_count/batch_size,(sample_count是样本总数,epoch是总的循环次数) warmup_learning_rate: 这是warm up阶段线性增长的初始值 warmup_steps: warm_up总的需要持续的步数 hold_base_rate_steps: 这是可选的参数,即当warm up阶段结束后保持学习率不变,知道hold_base_rate_steps结束后才开始学习率下降 """ if total_steps < warmup_steps: raise ValueError('total_steps must be larger or equal to ' 'warmup_steps.') #这里实现了余弦退火的原理,设置学习率的最小值为0,所以简化了表达式 learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi * (global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps))) #如果hold_base_rate_steps大于0,表明在warm up结束后学习率在一定步数内保持不变 if hold_base_rate_steps > 0: learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base) if warmup_steps > 0: if learning_rate_base < warmup_learning_rate: raise ValueError('learning_rate_base must be larger or equal to ' 'warmup_learning_rate.') #线性增长的实现 slope = (learning_rate_base - warmup_learning_rate) / warmup_steps warmup_rate = slope * global_step + warmup_learning_rate #只有当global_step 仍然处于warm up阶段才会使用线性增长的学习率warmup_rate,否则使用余弦退火的学习率learning_rate learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate) learning_rate = max(learning_rate,min_learn_rate) return learning_rate class WarmUpCosineDecayScheduler(keras.callbacks.Callback): """ 继承Callback,实现对学习率的调度 """ def __init__(self, learning_rate_base, total_steps, global_step_init=0, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, min_learn_rate=0, verbose=0): super(WarmUpCosineDecayScheduler, self).__init__() # 基础的学习率 self.learning_rate_base = learning_rate_base # 总共的步数,训练完所有世代的步数epochs * sample_count / batch_size self.total_steps = total_steps # 全局初始化step self.global_step = global_step_init # 热调整参数 self.warmup_learning_rate = warmup_learning_rate # 热调整步长,warmup_epoch * sample_count / batch_size self.warmup_steps = warmup_steps self.hold_base_rate_steps = hold_base_rate_steps # 参数显示 self.verbose = verbose # learning_rates用于记录每次更新后的学习率,方便图形化观察 self.min_learn_rate = min_learn_rate self.learning_rates = [] #更新global_step,并记录当前学习率 def on_batch_end(self, batch, logs=None): self.global_step = self.global_step + 1 lr = K.get_value(self.model.optimizer.lr) self.learning_rates.append(lr) #更新学习率 def on_batch_begin(self, batch, logs=None): lr = cosine_decay_with_warmup(global_step=self.global_step, learning_rate_base=self.learning_rate_base, total_steps=self.total_steps, warmup_learning_rate=self.warmup_learning_rate, warmup_steps=self.warmup_steps, hold_base_rate_steps=self.hold_base_rate_steps, min_learn_rate = self.min_learn_rate) K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nBatch %05d: setting learning ' 'rate to %s.' % (self.global_step + 1, lr)) # 载入Mnist手写数据集 mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = np.expand_dims(x_train,-1) x_test = np.expand_dims(x_test,-1) #-----------------------------# # 创建模型 #-----------------------------# inputs = Input([28,28,1]) x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Flatten()(x) x = Dense(1024)(x) x = Dense(256)(x) out = Dense(10, activation='softmax')(x) model = Model(inputs,out) # 设定优化器,loss,计算准确率 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 设置训练参数 epochs = 10 # 预热期 warmup_epoch = 3 # 每一次训练使用多少个Batch batch_size = 16 # 最大学习率 learning_rate_base = 1e-3 sample_count = len(x_train) # 总共的步长 total_steps = int(epochs * sample_count / batch_size) # 预热步长 warmup_steps = int(warmup_epoch * sample_count / batch_size) # 学习率 warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base, total_steps=total_steps, warmup_learning_rate=1e-5, warmup_steps=warmup_steps, hold_base_rate_steps=5, min_learn_rate = 1e-6 ) # 利用fit进行训练 model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=1, callbacks=[warm_up_lr]) plt.plot(warm_up_lr.learning_rates) plt.xlabel('Step', fontsize=20) plt.ylabel('lr', fontsize=20) plt.axis([0, total_steps, 0, learning_rate_base*1.1]) plt.xticks(np.arange(0, epochs, 1)) plt.grid() plt.title('Cosine decay with warmup', fontsize=20) plt.show()
4、余弦退火衰减更新版
论文当中的余弦退火衰减并非只上升下降一次,因此我重新写了一段代码用于实现多次上升下降:
实现方式如下,利用Callback实现,与普通的ReduceLROnPlateau调用方式类似:
import numpy as np import matplotlib.pyplot as plt import keras from keras import backend as K from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D from keras.models import Model def cosine_decay_with_warmup(global_step, learning_rate_base, total_steps, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, min_learn_rate=0, ): """ 参数: global_step: 上面定义的Tcur,记录当前执行的步数。 learning_rate_base:预先设置的学习率,当warm_up阶段学习率增加到learning_rate_base,就开始学习率下降。 total_steps: 是总的训练的步数,等于epoch*sample_count/batch_size,(sample_count是样本总数,epoch是总的循环次数) warmup_learning_rate: 这是warm up阶段线性增长的初始值 warmup_steps: warm_up总的需要持续的步数 hold_base_rate_steps: 这是可选的参数,即当warm up阶段结束后保持学习率不变,知道hold_base_rate_steps结束后才开始学习率下降 """ if total_steps < warmup_steps: raise ValueError('total_steps must be larger or equal to ' 'warmup_steps.') #这里实现了余弦退火的原理,设置学习率的最小值为0,所以简化了表达式 learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi * (global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps))) #如果hold_base_rate_steps大于0,表明在warm up结束后学习率在一定步数内保持不变 if hold_base_rate_steps > 0: learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base) if warmup_steps > 0: if learning_rate_base < warmup_learning_rate: raise ValueError('learning_rate_base must be larger or equal to ' 'warmup_learning_rate.') #线性增长的实现 slope = (learning_rate_base - warmup_learning_rate) / warmup_steps warmup_rate = slope * global_step + warmup_learning_rate #只有当global_step 仍然处于warm up阶段才会使用线性增长的学习率warmup_rate,否则使用余弦退火的学习率learning_rate learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate) learning_rate = max(learning_rate,min_learn_rate) return learning_rate class WarmUpCosineDecayScheduler(keras.callbacks.Callback): """ 继承Callback,实现对学习率的调度 """ def __init__(self, learning_rate_base, total_steps, global_step_init=0, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, min_learn_rate=0, # interval_epoch代表余弦退火之间的最低点 interval_epoch=[0.05, 0.15, 0.30, 0.50], verbose=0): super(WarmUpCosineDecayScheduler, self).__init__() # 基础的学习率 self.learning_rate_base = learning_rate_base # 热调整参数 self.warmup_learning_rate = warmup_learning_rate # 参数显示 self.verbose = verbose # learning_rates用于记录每次更新后的学习率,方便图形化观察 self.min_learn_rate = min_learn_rate self.learning_rates = [] self.interval_epoch = interval_epoch # 贯穿全局的步长 self.global_step_for_interval = global_step_init # 用于上升的总步长 self.warmup_steps_for_interval = warmup_steps # 保持最高峰的总步长 self.hold_steps_for_interval = hold_base_rate_steps # 整个训练的总步长 self.total_steps_for_interval = total_steps self.interval_index = 0 # 计算出来两个最低点的间隔 self.interval_reset = [self.interval_epoch[0]] for i in range(len(self.interval_epoch)-1): self.interval_reset.append(self.interval_epoch[i+1]-self.interval_epoch[i]) self.interval_reset.append(1-self.interval_epoch[-1]) #更新global_step,并记录当前学习率 def on_batch_end(self, batch, logs=None): self.global_step = self.global_step + 1 self.global_step_for_interval = self.global_step_for_interval + 1 lr = K.get_value(self.model.optimizer.lr) self.learning_rates.append(lr) #更新学习率 def on_batch_begin(self, batch, logs=None): # 每到一次最低点就重新更新参数 if self.global_step_for_interval in [0]+[int(i*self.total_steps_for_interval) for i in self.interval_epoch]: self.total_steps = self.total_steps_for_interval * self.interval_reset[self.interval_index] self.warmup_steps = self.warmup_steps_for_interval * self.interval_reset[self.interval_index] self.hold_base_rate_steps = self.hold_steps_for_interval * self.interval_reset[self.interval_index] self.global_step = 0 self.interval_index += 1 lr = cosine_decay_with_warmup(global_step=self.global_step, learning_rate_base=self.learning_rate_base, total_steps=self.total_steps, warmup_learning_rate=self.warmup_learning_rate, warmup_steps=self.warmup_steps, hold_base_rate_steps=self.hold_base_rate_steps, min_learn_rate = self.min_learn_rate) K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nBatch %05d: setting learning ' 'rate to %s.' % (self.global_step + 1, lr)) # 载入Mnist手写数据集 mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = np.expand_dims(x_train,-1) x_test = np.expand_dims(x_test,-1) y_train = y_train #-----------------------------# # 创建模型 #-----------------------------# inputs = Input([28,28,1]) x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x) x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x) x = Flatten()(x) x = Dense(1024)(x) x = Dense(256)(x) out = Dense(10, activation='softmax')(x) model = Model(inputs,out) # 设定优化器,loss,计算准确率 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 设置训练参数 epochs = 10 # 预热期 warmup_epoch = 2 # 每一次训练使用多少个Batch batch_size = 256 # 最大学习率 learning_rate_base = 1e-3 sample_count = len(x_train) # 总共的步长 total_steps = int(epochs * sample_count / batch_size) # 预热步长 warmup_steps = int(warmup_epoch * sample_count / batch_size) # 学习率 warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base, total_steps=total_steps, warmup_learning_rate=1e-5, warmup_steps=warmup_steps, hold_base_rate_steps=5, min_learn_rate=1e-6 ) # 利用fit进行训练 model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=1, callbacks=[warm_up_lr]) plt.plot(warm_up_lr.learning_rates) plt.xlabel('Step', fontsize=20) plt.ylabel('lr', fontsize=20) plt.axis([0, total_steps, 0, learning_rate_base*1.1]) plt.grid() plt.title('Cosine decay with warmup', fontsize=20) plt.show()
以上就是python神经网络Keras常用学习率衰减汇总的详细内容,更多关于Keras学习率衰减的资料请关注脚本之家其它相关文章!