本文由RT-Thread论坛用户@爱玩的小赵 原创发布:https://club.rt-thread.org/as...
【国产MCU移植】手把手教你使用RT-Thread制作GD32系列BSP
熟悉RT-Thread的朋友都知道,RT-Thread提供了许多BSP,但不是所有的板子都能找到相应的BSP,这时就需要移植新的BSP。RT-Thread的所有BSP中,最完善的BSP就是STM32系列,但从2020年下半年开始,国内出现史无前例的芯片缺货潮,我们参考STM32F103系列进行GD32F103系列的BSP制作。
我使用的是GD32F103VET6芯片进行移植,在文章的末尾附上本人gitee库。
**
1 BSP 框架制作
**
在具体移植GD32407V-START的BSP之前,先做好GD32的BSP架构。BSP 框架结构如下图所示:
在这里插入图片描述
GD32的BSP架构主要分为三个部分:libraries、tools和具体的Boards,其中libraries包含了GD32的通用库,包括每个系列的HAL以及适配RT-Thread的drivers;tools是生成工程的Python脚本工具;另外就是Boards文件,当然这里的Boards有很多,我这里值列举了GD32103C-eval。
这里先谈谈libraries和tools的构建,然后在后文单独讨论具体板级BSP的制作。
1.1 Libraries构建
Libraries文件夹包含兆易创新提供的HAL库,这个直接在兆易创新的官网就可以下载。
http://www.gd32mcu.com/cn/dow...
然后将HAL库(GD32F10x_Firmware_Library)复制到libraries目录下,重命名为GD32F10x_Firmware_Library,其他的系列类似
GD32F10x_Firmware_Library就是官方的文件,基本是不用动的,只是在文件夹中需要添加构建工程的脚本文件SConscript,其实也就是Python脚本。
SConscript文件的内容如下:
import rtconfig
from building import *
# get current directory
cwd = GetCurrentDir()
# The set of source files associated with this SConscript file.
src = Split('''
CMSIS/GD/GD32F10x/Source/system_gd32f10x.c
GD32F10x_standard_peripheral/Source/gd32f10x_gpio.c
GD32F10x_standard_peripheral/Source/gd32f10x_rcu.c
GD32F10x_standard_peripheral/Source/gd32f10x_exti.c
GD32F10x_standard_peripheral/Source/gd32f10x_misc.c
''')
if GetDepend(['RT_USING_SERIAL']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_usart.c']
if GetDepend(['RT_USING_I2C']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_i2c.c']
if GetDepend(['RT_USING_SPI']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_spi.c']
if GetDepend(['RT_USING_CAN']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_can.c']
if GetDepend(['BSP_USING_ETH']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_enet.c']
if GetDepend(['RT_USING_ADC']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_adc.c']
if GetDepend(['RT_USING_DAC']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_dac.c']
if GetDepend(['RT_USING_HWTIMER']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_timer.c']
if GetDepend(['RT_USING_RTC']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_rtc.c']
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_pmu.c']
if GetDepend(['RT_USING_WDT']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_wwdgt.c']
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_fwdgt.c']
if GetDepend(['RT_USING_SDIO']):
src += ['GD32F10x_standard_peripheral/Source/gd32f10x_sdio.c']
path = [
cwd + '/CMSIS/GD/GD32F10x/Include',
cwd + '/CMSIS',
cwd + '/GD32F10x_standard_peripheral/Include',]
CPPDEFINES = ['USE_STDPERIPH_DRIVER']
group = DefineGroup('Libraries', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
该文件主要的作用就是添加库文件和头文件路径,一部分文件是属于基础文件,因此直接调用Python库的Split包含,另外一部分文件是根据实际的应用需求添加的。
接下来说说Kconfig文件,这里是对内核和组件的功能进行配置,对RT-Thread的组件进行自由裁剪。
如果使用RT-Thread studio,则通过RT-Thread Setting可以体现Kconfig文件的作用。
如果使用ENV环境,则在使用 menuconfig配置和裁剪 RT-Thread时体现。
后面所有的Kconfig文件都是一样的逻辑。下表列举一些常用的Kconfig句法规则。
Kconfig的语法规则网上资料很多,自行去学习吧。
bsp/gd32/Kconfig内容如下:
config SOC_FAMILY_GD32
bool
config SOC_SERIES_GD32F1
bool
select ARCH_ARM_CORTEX_M3
select SOC_FAMILY_GD32
config SOC_SERIES_GD32F2
bool
select ARCH_ARM_CORTEX_M3
select SOC_FAMILY_GD32
config SOC_SERIES_GD32F3
bool
select ARCH_ARM_CORTEX_M4
select SOC_FAMILY_GD32
config SOC_SERIES_GD32F4
bool
select ARCH_ARM_CORTEX_M4
select SOC_FAMILY_GD32
最后谈谈HAL_Drivers,这个文件夹就是GD32的外设驱动文件夹,为上层应用提供调用接口。
好了,先看E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\libraries\gd32_drivers/SConscript文件。
Import('RTT_ROOT')
Import('rtconfig')
from building import *
cwd = GetCurrentDir()
# add the general drivers.
src = Split("""
""")
# add pin drivers.
if GetDepend('RT_USING_PIN'):
src += ['drv_gpio.c']
# add usart drivers.
if GetDepend(['RT_USING_SERIAL']):
src += ['drv_usart.c']
# add i2c drivers.
if GetDepend(['RT_USING_I2C', 'RT_USING_I2C_BITOPS']):
if GetDepend('BSP_USING_I2C0') or GetDepend('BSP_USING_I2C1') or GetDepend('BSP_USING_I2C2') or GetDepend('BSP_USING_I2C3'):
src += ['drv_soft_i2c.c']
# add spi drivers.
if GetDepend('RT_USING_SPI'):
src += ['drv_spi.c']
# add spi flash drivers.
if GetDepend('RT_USING_SFUD'):
src += ['drv_spi_flash.c', 'drv_spi.c']
if GetDepend('RT_USING_WDT'):
src += ['drv_wdt.c']
if GetDepend('RT_USING_RTC'):
src += ['drv_rtc.c']
if GetDepend('RT_USING_HWTIMER'):
src += ['drv_hwtimer.c']
if GetDepend('RT_USING_ADC'):
src += ['drv_adc.c']
path = [cwd]
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path)
Return('group')
E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\libraries\gd32_drivers/Kconfig文件结构如下:
if BSP_USING_USBD
config BSP_USBD_TYPE_FS
bool
# "USB Full Speed (FS) Core"
config BSP_USBD_TYPE_HS
bool
# "USB High Speed (HS) Core"
config BSP_USBD_SPEED_HS
bool
# "USB High Speed (HS) Mode"
config BSP_USBD_SPEED_HSINFS
bool
# "USB High Speed (HS) Core in FS mode"
config BSP_USBD_PHY_EMBEDDED
bool
# "Using Embedded phy interface"
config BSP_USBD_PHY_UTMI
bool
# "UTMI: USB 2.0 Transceiver Macrocell Interace"
config BSP_USBD_PHY_ULPI
bool
# "ULPI: UTMI+ Low Pin Interface"
endif
1.2 Tools构建
该文件夹就是工程构建的脚本,
import os
import sys
import shutil
cwd_path = os.getcwd()
sys.path.append(os.path.join(os.path.dirname(cwd_path), 'rt-thread', 'tools'))
# BSP dist function
def dist_do_building(BSP_ROOT, dist_dir):
from mkdist import bsp_copy_files
import rtconfig
print("=> copy gd32 bsp library")
library_dir = os.path.join(dist_dir, 'libraries')
library_path = os.path.join(os.path.dirname(BSP_ROOT), 'libraries')
bsp_copy_files(os.path.join(library_path, rtconfig.BSP_LIBRARY_TYPE),
os.path.join(library_dir, rtconfig.BSP_LIBRARY_TYPE))
print("=> copy bsp drivers")
bsp_copy_files(os.path.join(library_path, 'HAL_Drivers'), os.path.join(library_dir, 'HAL_Drivers'))
shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig'))
以上代码很简单,主要使用了Python的OS模块的join函数,该函数的作用就是连接两个或更多的路径名。最后将BSP依赖的文件复制到指定目录下。
在使用scons --dist 命令打包的时候,就是依赖的该脚本,生成的dist 文件夹的工程到任何目录下使用,也就是将BSP相关的库以及内核文件提取出来,可以将该工程任意拷贝。
1.3 gd32f103vet6-eval构建
**
2 BSP移植
**
2.1 Keil环境准备
接下来我们下载GD32F30x的软件支持包。
下载地址:http://www.gd32mcu.com/cn/dow...
双击安装包,按照操作步骤进行安装。
安装成功后,重新打开Keil,则可以在File->Device Database中出现Gigadevice的下拉选项,点击可以查看到相应的型号。
2.2 BSP工程制作
1.构建基础工程
首先看看RT-Thread代码仓库中已有很多BSP,而我要移植的是Cortex-M4内核。这里我找了一个相似的内核,把它复制一份,并修改文件名为:gd32103C-eval。这样就有一个基础的工程。然后就开始增删改查,完成最终的BSP,几乎所有的BSP的制作都是如此。
2.修改BSP构建脚本
E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6/Kconfig修改后的内容如下
mainmenu "RT-Thread Configuration"
config BSP_DIR
string
option env="BSP_ROOT"
default "."
config RTT_DIR
string
option env="RTT_ROOT"
default "../../.."
config PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
source "../libraries/Kconfig"
source "board/Kconfig"
该文件是获取所有路径下的Kconfig。
E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6/SConscript修改后的内容如下:
# for module compiling
import os
Import('RTT_ROOT')
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')
该文件是用于遍历当前目录的所有文件夹。
E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6/SConstruct修改后的内容如下:
import os
import sys
import rtconfig
if os.getenv('RTT_ROOT'):
RTT_ROOT = os.getenv('RTT_ROOT')
else:
RTT_ROOT = os.path.normpath(os.getcwd() + '/../../..')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
from building import *
except:
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
print(RTT_ROOT)
exit(-1)
TARGET = 'rtthread.' + rtconfig.TARGET_EXT
DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
AR = rtconfig.AR, ARFLAGS = '-rc',
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
if rtconfig.PLATFORM == 'iar':
env.Replace(CCCOM = ['$CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -o $TARGET $SOURCES'])
env.Replace(ARFLAGS = [''])
env.Replace(LINKCOM = env["LINKCOM"] + ' --map rtthread.map')
Export('RTT_ROOT')
Export('rtconfig')
SDK_ROOT = os.path.abspath('./')
if os.path.exists(SDK_ROOT + '/libraries'):
libraries_path_prefix = SDK_ROOT + '/libraries'
else:
libraries_path_prefix = os.path.dirname(SDK_ROOT) + '/libraries'
SDK_LIB = libraries_path_prefix
Export('SDK_LIB')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
gd32_library = 'GD32F10x_Firmware_Library'
rtconfig.BSP_LIBRARY_TYPE = gd32_library
# include libraries
objs.extend(SConscript(os.path.join(libraries_path_prefix, gd32_library, 'SConscript')))
# include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'gd32_drivers', 'SConscript')))
# make a building
DoBuilding(TARGET, objs)
该文件用于链接所有的依赖文件,并调用make进行编译。
3.修改开发环境信息
E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6/cconfig.h修改后的内容如下
#ifndef CCONFIG_H__
#define CCONFIG_H__
/* Automatically generated file; DO NOT EDIT. */
/* compiler configure file for RT-Thread in GCC*/
#define HAVE_NEWLIB_H 1
#define LIBC_VERSION "newlib 2.4.0"
#define HAVE_SYS_SIGNAL_H 1
#define HAVE_SYS_SELECT_H 1
#define HAVE_PTHREAD_H 1
#define HAVE_FDSET 1
#define HAVE_SIGACTION 1
#define GCC_VERSION_STR "5.4.1 20160919 (release) [ARM/embedded-5-branch revision 240496]"
#define STDC "2011"
#endif
该文件是是编译BSP的环境信息,需根据实时修改。
4.修改KEIL的模板工程
双击:template.uvprojx即可修改模板工程。
修改为对应芯片设备:
修改FLASH和RAM的配置:该部分需参照技术手册进行修改
修改默认调试工具:CMSIS-DAP Debugger。
修改编程算法:
5.修改board文件夹
(1) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board\linker_scripts/link.icf
修改后的内容如下
/*###ICF### Section handled by ICF editor, don't touch! ****/
/*-Editor annotation file-*/
/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */
/*-Specials-*/
define symbol __ICFEDIT_intvec_start__ = 0x08000000;
/*-Memory Regions-*/
define symbol __ICFEDIT_region_ROM_start__ = 0x08000000;
define symbol __ICFEDIT_region_ROM_end__ = 0x08080000;
define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;
define symbol __ICFEDIT_region_RAM_end__ = 0x20010000;
/*-Sizes-*/
define symbol __ICFEDIT_size_cstack__ = 0x200;
define symbol __ICFEDIT_size_heap__ = 0x200;
/**** End of ICF editor section. ###ICF###*/
export symbol __ICFEDIT_region_RAM_end__;
define symbol __region_RAM1_start__ = 0x10000000;
define symbol __region_RAM1_end__ = 0x1000FFFF;
define memory mem with size = 4G;
define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to __ICFEDIT_region_ROM_end__];
define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to __ICFEDIT_region_RAM_end__];
define region RAM1_region = mem:[from __region_RAM1_start__ to __region_RAM1_end__];
define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };
define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };
initialize by copy { readwrite };
do not initialize { section .noinit };
keep { section FSymTab };
keep { section VSymTab };
keep { section .rti_fn* };
place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };
place in ROM_region { readonly };
place in RAM_region { readwrite,
block CSTACK, block HEAP };
place in RAM1_region { section .sram };
该文件是IAR编译的链接脚本,根据《GD32F103xx_Datasheet_Rev2.1》可知,GD32F103VET6的flash大小为3072KB,SRAM大小为192KB,因此需要设置ROM和RAM的起始地址和堆栈大小等。
(2) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board\linker_scripts/link.ld
修改后的内容如下:
/*
* linker script for GD32F30x with GNU ld
* BruceOu 2021-12-18
*/
/* Program Entry, set to mark it as "used" and avoid gc */
MEMORY
{
CODE (rx) : ORIGIN = 0x08000000, LENGTH = 512k /* 256KB flash */
DATA (rw) : ORIGIN = 0x20000000, LENGTH = 64k /* 48KB sram */
}
ENTRY(Reset_Handler)
_system_stack_size = 0x200;
SECTIONS
{
.text :
{
. = ALIGN(4);
_stext = .;
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
*(.text) /* remaining code */
*(.text.*) /* remaining code */
*(.rodata) /* read-only data (constants) */
*(.rodata*)
*(.glue_7)
*(.glue_7t)
*(.gnu.linkonce.t*)
/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))
__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
. = ALIGN(4);
/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
. = ALIGN(4);
. = ALIGN(4);
_etext = .;
} > CODE = 0
/* .ARM.exidx is sorted, so has to go in its own output section. */
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
/* This is used by the startup in order to initialize the .data secion */
_sidata = .;
} > CODE
__exidx_end = .;
/* .data section which is used for initialized data */
.data : AT (_sidata)
{
. = ALIGN(4);
/* This is used by the startup in order to initialize the .data secion */
_sdata = . ;
*(.data)
*(.data.*)
*(.gnu.linkonce.d*)
. = ALIGN(4);
/* This is used by the startup in order to initialize the .data secion */
_edata = . ;
} >DATA
.stack :
{
. = . + _system_stack_size;
. = ALIGN(4);
_estack = .;
} >DATA
__bss_start = .;
.bss :
{
. = ALIGN(4);
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .;
*(.bss)
*(.bss.*)
*(COMMON)
. = ALIGN(4);
/* This is used by the startup in order to initialize the .bss secion */
_ebss = . ;
*(.bss.init)
} > DATA
__bss_end = .;
_end = .;
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections.
* Symbols in the DWARF debugging sections are relative to the beginning
* of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
}
该文件是GCC编译的链接脚本,根据《GD32F407xx_Datasheet_Rev2.1》可知,GD32F407VKT6的flash大小为3072KB,SRAM大小为192KB,因此CODE和DATA 的LENGTH分别设置为3072KB和192KB,其他芯片类似,但其实地址都是一样的。
(3) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board/linker_scripts/link.sct
该文件是MDK的连接脚本,根据《GD32F407xx_Datasheet_Rev2.1》手册,因此需要将 LR_IROM1 和 ER_IROM1 的参数设置为 0x00300000;RAM 的大小为192k,因此需要将 RW_IRAM1 的参数设置为 0x00030000。
; *************************************************************
; *** Scatter-Loading Description File generated by uVision ***
; *************************************************************
LR_IROM1 0x08000000 0x00080000 { ; load region size_region
ER_IROM1 0x08000000 0x00080000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
RW_IRAM1 0x20000000 0x00010000 { ; RW data
.ANY (+RW +ZI)
}
}
(4) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board/board.h文件
修改后内容如下:
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-12-18 BruceOu first implementation
*/
#ifndef __BOARD_H__
#define __BOARD_H__
#include "gd32f10x.h"
#include "drv_usart.h"
#include "drv_gpio.h"
#include "gd32f10x_exti.h"
#define EXT_SDRAM_BEGIN (0xC0000000U) /* the begining address of external SDRAM */
#define EXT_SDRAM_END (EXT_SDRAM_BEGIN + (32U * 1024 * 1024)) /* the end address of external SDRAM */
// Internal SRAM memory size[Kbytes] <8-48>
// Default: 48
#ifdef __ICCARM__
// Use *.icf ram symbal, to avoid hardcode.
extern char __ICFEDIT_region_RAM_end__;
#define GD32_SRAM_END &__ICFEDIT_region_RAM_end__
#else
#define GD32_SRAM_SIZE 64
#define GD32_SRAM_END (0x20000000 + GD32_SRAM_SIZE * 1024)
#endif
#ifdef __CC_ARM
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN (&Image$$RW_IRAM1$$ZI$$Limit)
#elif __ICCARM__
#pragma section="HEAP"
#define HEAP_BEGIN (__segment_end("HEAP"))
#else
extern int __bss_end;
#define HEAP_BEGIN (&__bss_end)
#endif
#define HEAP_END GD32_SRAM_END
#endif
值得注意的是,不同的编译器规定的堆栈内存的起始地址 HEAP_BEGIN 和结束地址 HEAP_END。这里 HEAP_BEGIN 和 HEAP_END 的值需要和前面的链接脚本是一致的,需要结合实际去修改。
(5) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board/board.c文件
修改后的文件如下:
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-12-18 BruceOu first implementation
*/
#include
#include
#include
#include
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);
NVIC_SetPriority(SysTick_IRQn, 0);
}
/**
* This is the timer interrupt service routine.
*
*/
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
/**
* This function will initial GD32 board.
*/
void rt_hw_board_init()
{
/* NVIC Configuration */
#define NVIC_VTOR_MASK 0x3FFFFF80
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x10000000 */
SCB->VTOR = (0x10000000 & NVIC_VTOR_MASK);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
SCB->VTOR = (0x08000000 & NVIC_VTOR_MASK);
#endif
SystemClock_Config();
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
#ifdef RT_USING_CONSOLE
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
#ifdef BSP_USING_SDRAM
rt_system_heap_init((void *)EXT_SDRAM_BEGIN, (void *)EXT_SDRAM_END);
#else
rt_system_heap_init((void *)HEAP_BEGIN, (void *)HEAP_END);
#endif
}
/*@}*/
该文件重点关注的就是SystemClock_Config配置,SystemCoreClock的定义在system_gd32f1xx.c中定义的.
(6) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board/Kconfig文件
修改后内容如下:
menu "Hardware Drivers Config"
config SOC_SERIES_GD32F10x
bool
default y
config SOC_GD32103V
bool
select SOC_SERIES_GD32F10x
select RT_USING_COMPONENTS_INIT
select RT_USING_USER_MAIN
default y
menu "Onboard Peripheral Drivers"
endmenu
menu "On-chip Peripheral Drivers"
config BSP_USING_GPIO
bool "Enable GPIO"
select RT_USING_PIN
default y
menuconfig BSP_USING_UART
bool "Enable UART"
default y
select RT_USING_SERIAL
if BSP_USING_UART
config BSP_USING_UART0
bool "Enable UART0"
default n
config BSP_UART0_RX_USING_DMA
bool "Enable UART0 RX DMA"
depends on BSP_USING_UART0
select RT_SERIAL_USING_DMA
default n
config BSP_USING_UART1
bool "Enable UART1"
default y
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1
select RT_SERIAL_USING_DMA
default n
config BSP_USING_UART2
bool "Enable UART2"
default n
config BSP_UART2_RX_USING_DMA
bool "Enable UART2 RX DMA"
depends on BSP_USING_UART2
select RT_SERIAL_USING_DMA
default n
config BSP_USING_UART3
bool "Enable UART3"
default n
config BSP_UART3_RX_USING_DMA
bool "Enable UART3 RX DMA"
depends on BSP_USING_UART3
select RT_SERIAL_USING_DMA
default n
config BSP_USING_UART4
bool "Enable UART4"
default n
config BSP_UART4_RX_USING_DMA
bool "Enable UART4 RX DMA"
depends on BSP_USING_UART4
select RT_SERIAL_USING_DMA
default n
endif
menuconfig BSP_USING_SPI
bool "Enable SPI BUS"
default n
select RT_USING_SPI
if BSP_USING_SPI
config BSP_USING_SPI1
bool "Enable SPI1 BUS"
default n
config BSP_SPI1_TX_USING_DMA
bool "Enable SPI1 TX DMA"
depends on BSP_USING_SPI1
default n
config BSP_SPI1_RX_USING_DMA
bool "Enable SPI1 RX DMA"
depends on BSP_USING_SPI1
select BSP_SPI1_TX_USING_DMA
default n
endif
menuconfig BSP_USING_I2C1
bool "Enable I2C1 BUS (software simulation)"
default n
select RT_USING_I2C
select RT_USING_I2C_BITOPS
select RT_USING_PIN
if BSP_USING_I2C1
config BSP_I2C1_SCL_PIN
int "i2c1 scl pin number"
range 1 216
default 24
config BSP_I2C1_SDA_PIN
int "I2C1 sda pin number"
range 1 216
default 25
endif
config BSP_USING_WDT
bool "Enable Watchdog Timer"
select RT_USING_WDT
default n
config BSP_USING_RTC
bool "Enable Internal RTC"
select RT_USING_RTC
default n
menuconfig BSP_USING_HWTIMER
bool "Enable hwtimer"
default n
select RT_USING_HWTIMER
if BSP_USING_HWTIMER
config BSP_USING_HWTIMER0
bool "using hwtimer0"
default n
config BSP_USING_HWTIMER1
bool "using hwtimer1"
default n
config BSP_USING_HWTIMER2
bool "using hwtimer2"
default n
config BSP_USING_HWTIMER3
bool "using hwtimer3"
default n
config BSP_USING_HWTIMER4
bool "using hwtimer4"
default n
config BSP_USING_HWTIMER5
bool "using hwtimer5"
default n
config BSP_USING_HWTIMER6
bool "using hwtimer6"
default n
config BSP_USING_HWTIMER7
bool "using hwtimer7"
default n
endif
menuconfig BSP_USING_ADC
bool "Enable ADC"
default n
select RT_USING_ADC
if BSP_USING_ADC
config BSP_USING_ADC0
bool "using adc0"
default n
config BSP_USING_ADC1
bool "using adc1"
default n
endif
source "../libraries/gd32_drivers/Kconfig"
endmenu
menu "Board extended module Drivers"
endmenu
endmenu
这个文件就是配置板子驱动的,这里可根据实际需求添加。
(7) 修改E:\RT_Thread\GD32_BSP\rt_thread_code\bsp\gd32f103\gd32f103vet6\board/SConscript文件
修改后内容如下:
import os
import rtconfig
from building import *
Import('SDK_LIB')
cwd = GetCurrentDir()
# add general drivers
src = Split('''
board.c
''')
path = [cwd]
startup_path_prefix = SDK_LIB
if rtconfig.PLATFORM == 'gcc':
src += [startup_path_prefix + '/GD32F10x_Firmware_Library/CMSIS/GD/GD32F10x/Source/GCC/startup_gd32f10x_hd.s']
elif rtconfig.PLATFORM in ['armcc', 'armclang']:
src += [startup_path_prefix + '/GD32F10x_Firmware_Library/CMSIS/GD/GD32F10x/Source/ARM/startup_gd32f10x_hd.s']
elif rtconfig.CROSS_TOOL == 'iar':
src += [startup_path_prefix + '/GD32F10x_Firmware_Library/CMSIS/GD/GD32F10x/Source/IAR/startup_gd32f10x_hd.s']
CPPDEFINES = ['GD32F10X_HD']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
cwd = GetCurrentDir()
# add general drivers
src = Split('''
board.c
''')
path = [cwd]
startup_path_prefix = SDK_LIB
if rtconfig.CROSS_TOOL == 'gcc':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/GCC/startup_gd32f4xx.S']
elif rtconfig.CROSS_TOOL == 'keil':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/ARM/startup_gd32f4xx.s']
elif rtconfig.CROSS_TOOL == 'iar':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/IAR/startup_gd32f4xx.s']
CPPDEFINES = ['GD32F407xx']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
该文件主要添加board文件夹的.c文件和头文件路径。另外根据开发环境选择相应的汇编文件,和前面的libraries的SConscript语法是一样,文件的结构都是类似的,这里就没有注释了。
到这里,基本所有的依赖脚本都配置完成了,接下来将通过menuconfig配置工程。
6.menuconfig配置
**剩下的笔者参考:https://club.rt-thread.org/as...
同时文章结构也采用 ·BruceOu 博主的文章结构,在这里对原文章博主表示感谢。**
对@乐乐爱学习 学长表示感谢,哈哈哈,学长的话如同涛涛江水,络绎不绝。一位优秀的全栈工程师@乐乐爱学习