Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。Matplotlib 可以用来绘制各种静态,动态,交互式的图表。可是说是科研论文必备神器了。Matplotlib 通常与 NumPy 、 SciPy、Pandas配合使用, 这几个库相互协同几乎可以代替MatLab的一些常用功能。
Matplotlib 官网
NumPy 官网
SciPy 官网
我们可以通过终端指令来安装
pip install -U matplotlib
安装后可以通过如下指令来查看matplotlib库版本
import matplotlib
print(matplotlib.__version__)
#3.5.1
Pyplot 是 Matplotlib 的子库,使用该子库可以很方方便的让用户绘制2D图表。
Pyplot 内置很多绘图函数,通过一些间的的调用就可以画出很多既好看又实用的图像。
在导入该库的时候,我们一般都使用如下指令给matplotlib.pyplot换一个名字
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints)
plt.show()
linestyle参数控制
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linestyle = 'dotted') #linestyle
plt.show()
linestyle简写形式plt.plot(ypoints, ls = ‘-.’):
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, ls = '--')
plt.show()
线条样式对照表
类型 | 简写 | 说明 |
---|---|---|
‘solid’ (默认) | ‘-’ | 实线 |
‘dotted’ | ‘:’ | 点虚线 |
‘dashed’ | ‘–’ | 破折线 |
‘dashdot’ | ‘-.’ | 点划线 |
‘None’ | ‘’ 或 ’ ’ | 不画线 |
color 参数控制, color 参数同样可以简写为c,默认颜色为浅蓝色;
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, color = 'b')
plt.show()
颜色对照表
颜色标记 | 描述 |
---|---|
‘r’ | 红色 |
‘g’ | 绿色 |
‘b’ | 蓝色 |
‘c’ | 青色 |
‘m’ | 品红 |
‘y’ | 黄色 |
‘k’ | 黑色 |
‘w’ | 白色 |
经过测试发现自定义颜色也是支持的,只需要输入十六进制颜色值或者RGB参数就可以
这里给大家推荐一篇博文,里面给出了RGB颜色表
linewidth 参数来控制,同样可以简写为 lw,值可以是小数
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linewidth = '10.5')
plt.show()
import matplotlib.pyplot as plt
import numpy as np
y1 = np.array([3, 7, 5, 9])
y2 = np.array([6, 1, 12, 8])
plt.plot(y1)
plt.plot(y2)
plt.show()
这里注意一个细节,我们只给出了Y轴的数据,没有给X轴的数据,X 的值默认设置为 [0, 1, 2, 3]
我们也可以自己设置 X 坐标值
xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签
import numpy as np
import matplotlib.pyplot as plt
x = np.array([2, 4, 6, 8])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)
plt.xlabel("x - label")
plt.ylabel("y - label")
plt.show()
title() 方法设置标题
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)
plt.title("TITLE")
plt.xlabel("x - label")
plt.ylabel("y - label")
plt.show()
Matplotlib 默认情况不支持中文,我们可以使用以下简单的方法来解决
你也可以在网盘下载: https://pan.baidu.com/s/10-w1JbXZSnx3Tm6uGpPGOw,提取码:yxqu。
可以下载个 OTF 字体,比如 SourceHanSansSC-Bold.otf,将该文件文件放在当前执行的代码文件中
import matplotlib as matplotlib
import numpy as np
import matplotlib.pyplot as plt
# fname 为 你下载的字体库路径,注意 SourceHanSansSC-Bold.otf 字体的路径
zhfont1 = matplotlib.font_manager.FontProperties(fname="SourceHanSansSC-Bold.otf")
x = np.arange(1, 11)
y = 2 * x + 5
plt.title("测试", fontproperties=zhfont1)
# fontproperties 设置中文显示,fontsize 设置字体大小
plt.xlabel("x 轴", fontproperties=zhfont1)
plt.ylabel("y 轴", fontproperties=zhfont1)
plt.plot(x, y)
plt.show()
grid() 方法来设置图表中的网格线
参数说明:
matplotlib.pyplot.grid(b=None, which='major', axis='both', )
eg:
import numpy as np
import matplotlib.pyplot as plt
x = np.array([2, 4, 6, 8])
y = np.array([1, 4, 9, 16])
plt.title("grid()")
plt.xlabel("x - label")
plt.ylabel("y - label")
plt.plot(x, y)
plt.grid()
plt.show()
我们可以使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图。
subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可
import matplotlib.pyplot as plt
import numpy as np
#plot 1:
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])
plt.subplot(1, 2, 1)
plt.plot(xpoints,ypoints)
plt.title("plot 1")
#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.subplot(1, 2, 2)
plt.plot(x,y)
plt.title("plot 2")
plt.suptitle("RUNOOB subplot Test")
plt.show()
subplots()
matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)
参数说明:
我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。
scatter() 方法语法格式如下:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors=None, plotnonfinite=False, data=None, kwargs)
参数说明:
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
plt.scatter(x, y)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
sizes = np.array([20,50,100,200,500,1000,60,90])
plt.scatter(x, y, s=sizes)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
colors = np.array(["red","green","black","orange","purple","beige","cyan","magenta"])
plt.scatter(x, y, c=colors)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
plt.scatter(x, y, color = 'hotpink')
x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])
y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])
plt.scatter(x, y, color = '#88c999')
plt.show()
(此处敲黑板,随机数画图,科研必备,不能说太直白[手动狗头])
import numpy as np
import matplotlib.pyplot as plt
# 随机数生成器的种子
np.random.seed(19680801)
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
plt.scatter(x, y, s=area, c=colors, alpha=0.5) # 设置颜色及透明度
plt.title("RUNOOB Scatter Test") # 设置标题
plt.show()
我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。
bar() 方法语法格式如下:
matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, align='center', data=None, kwargs)
参数说明:
import matplotlib.pyplot as plt
import numpy as np
x = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])
plt.bar(x,y)
plt.show()
垂直方向的柱形图可以使用 barh() 方法来设置:
import matplotlib.pyplot as plt
import numpy as np
x = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])
plt.bar(x, y, color = ["#4CAF50","red","hotpink","#556B2F"])
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])
plt.bar(x, y, width = 0.1)
plt.show()
我们可以使用 pyplot 中的 pie() 方法来绘制饼图。
pie() 方法语法格式如下:
matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, rotatelabels=False, *, normalize=None, data=None)
参数说明:
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=['A','B','C','D'], # 设置饼图标签
colors=["#d5695d", "#5d8ca8", "#65a479", "#a564c9"], # 设置饼图颜色
)
plt.title("RUNOOB Pie Test") # 设置标题
plt.show()
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=['A','B','C','D'], # 设置饼图标签
colors=["#d5695d", "#5d8ca8", "#65a479", "#a564c9"], # 设置饼图颜色
explode=(0, 0.2, 0, 0), # 第二部分突出显示,值越大,距离中心越远
autopct='%.2f%%', # 格式化输出百分比
)
plt.title("RUNOOB Pie Test")
plt.show()
参考资料