入门tensorflow笔记之神经网络优化

激活函数:
入门tensorflow笔记之神经网络优化_第1张图片
神经网络的复杂度:通常采用神经网络的层数和神经网络的参数的个数表示。
计算神经网络的层数的时候只计算具有计算能力的层。
层数=隐藏层的层数+1个输出层
总参数=总W+总b
入门tensorflow笔记之神经网络优化_第2张图片
损失函数:预测值(y)与已知答案(y_)的差距。
神经网络优化的目标:loss最小。主流的计算loss的方法:mse(mean squared error 均方误差)、自定义、ce(cross entropy 交叉熵)
入门tensorflow笔记之神经网络优化_第3张图片
栗子:预测酸奶日销量。x1,x2是影响日销量的因素。建模前,应预先采集的数据有:每日x1,x2和销量y_(即已知答案,最佳情况:产量=销量),拟造数据集X,Y:y_=x1+x2 噪声:-0.05~0.05 拟合可以预测的销量的函数。

##预测酸奶的日销量
#0导入模块生成数据集
import tensorflow as tf
import  numpy as np
BATCH_SIZE=8
SEED=23455
#保证每次生成的数据集一样。随机生成的结果相同
rdm=np.random.RandomState(SEED)
X=rdm.rand(32,2)
##随机生成三行两列的数据集X
Y_=[[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X]
#rand函数生成随机数,变成-0.5-0.5之间随机数

#1定义神经网络的输入、参数、输出,定义前向传播过程
x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1))
w1=tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y=tf.matmul(x,w1)

#2定义损失函数及反向传播的方法
#定义损失函数为MSE,反向传播方法为梯度下降
loss_mse=tf.reduce_mean(tf.square(y_-y))
train_step=tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse)

#3生成会话,训练STEPS轮
with tf.Session() as sess:
    init_op=tf.global_variables_initializer()
    #初始化所有变量
    sess.run(init_op)
    STEPS=20000
    #给出训练轮数
    for i in range(STEPS):
        start=(i*BATCH_SIZE)%32
        end=(i*BATCH_SIZE)%32+BATCH_SIZE
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
        if i% 500 == 0:
            ##每500轮打印一次神经网络的参数值
            print("After %d training steps,w1 is"%(i))
            print(sess.run(w1))
    print("final w1 is",sess.run(w1))
        

入门tensorflow笔记之神经网络优化_第4张图片

你可能感兴趣的:(入门tensorflow笔记之神经网络优化)