Python 中堪称神仙的6个内置函数

大家好,之前给大家分享过3个节省时间的Python技巧,当时就提出了,建议大家多使用Python的内置函数,既能提高自己的Python程序速度,同时还能保持代码简洁易懂。

今天,我会一次性分享6个堪称神仙的内置函数。在很多计算机书籍中,它们也通常作为高阶函数来介绍。而我自己在日常工作中,经常使用它们来使代码更快,更易于理解。喜欢记得收藏、关注、点赞。

注:完整代码、资料、技术交流,文末获取
Python 中堪称神仙的6个内置函数_第1张图片

Lambda 函数

Lambda函数用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。

lambda [arg1 [,arg2,.....argn]]:expression

lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。例如:

lambda x: x+2

如果我们也想像def定义的函数随时调用,可以将lambda函数分配给这样的函数对象。

add2 = lambda x: x+2
add2(10)

输出结果:

图片

利用Lambda函数,可以将代码简化很多,具体再举个例子。

Python 中堪称神仙的6个内置函数_第2张图片

如上图所示,结果列表newlist是使用lambda函数用一行代码生成的。

Map 函数

map()函数会将一个函数映射到一个输入列表的所有元素上。

map(function,iterable)

比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。

def makeupper(word):
    return word.upper()

colors=['red','yellow','green','black']
colors_uppercase=list(map(makeupper,colors))
colors_uppercase

此外,我们还可以使用匿名函数lambda来配合map函数,这样可以更加精简。

colors=['red','yellow','green','black']
colors_uppercase=list(map(lambda x: x.upper(),colors))
colors_uppercase

如果我们不用Map函数的话,就需要使用for循环。

Python 中堪称神仙的6个内置函数_第3张图片

如上图所示,在实际使用中Map函数会比for循环依次列表元素的方法快1.5倍

Reduce函数

当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。[1]

它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。

reduce(function, iterable[, initializer]) 

接下来我们用实例来演示reduce()的代码执行过程。

from functools import reduce
def add(x, y) :   # 两数相加
    return x + y
numbers = [1,2,3,4,5]
sum1 = reduce(add, numbers)   # 计算列表和

得到结果sum1 = 15

我们会看到,reduce将一个相加函数add()作用在一个列表[1,2,3,4,5]上,映射函数接收了两个参数,reduce()把结果继续和列表的下一个元素做累加计算

此外,我们同样可以使用匿名函数lambda来配合reduce函数,这样可以更加精简。

from functools import reduce
numbers = [1,2,3,4,5]
sum2 = reduce(lambda x, y: x+y, numbers)

得到输出sum2= 15,与之前结果保持一致。

需要注意:Python3.x开始reduce()已经被移到functools模块里[2],如果我们要使用,需要用from functools import reduce导入.

enumerate 函数

enumerate()函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。它的语法如下所示:

enumerate(iterable, start=0)

它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。

colors = ['red', 'yellow', 'green', 'black']
result = enumerate(colors)

如果我们有一个存放colors的颜色列表,运行后就会得到一个enumerate(枚举) 对象。它可以直接在for循环中使用,也可以转换为列表,具体用法如下所示。

for count, element in result:
    print(f"迭代编号:{count},对应元素:{element}")

Python 中堪称神仙的6个内置函数_第4张图片

Zip 函数

zip()函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表[3]。

我们还是用两个列表作为例子演示:

colors = ['red', 'yellow', 'green', 'black']
fruits = ['apple', 'pineapple', 'grapes', 'cherry']
for item in zip(colors,fruits):
    print(item)

输出结果:

Python 中堪称神仙的6个内置函数_第5张图片

当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。

prices =[100,50,120]
for item in zip(colors,fruits,prices):
    print(item)

Python 中堪称神仙的6个内置函数_第6张图片

Filter 函数

filter()函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表,其语法如下所示[4]。

filter(function, iterable)

比如举个例子,我们可以先创建一个函数来检查单词是否为大写,然后使用filter()函数过滤出列表中的所有奇数:

def is_odd(n):
    return n % 2 == 1

old_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

new_list = filter(is_odd, old_list)
print(newlist)

输出结果:

Python 中堪称神仙的6个内置函数_第7张图片


今天分享的这6个内置函数,在使用 Python 进行数据分析或者其他复杂的自动化任务时非常方便。

推荐文章

  • 李宏毅《机器学习》国语课程(2022)来了

  • 有人把吴恩达老师的机器学习和深度学习做成了中文版

  • 上瘾了,最近又给公司撸了一个可视化大屏(附源码)

  • 如此优雅,4款 Python 自动数据分析神器真香啊

  • 梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学

  • 香的很,整理了20份可视化大屏模板

技术交流

完整代码、资料、数据获取,可以按照下方方式找我

技术交流、求职内推、干货汇总、与 3000+来自阿里、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

目前开通了技术交流群,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

在这里插入图片描述

你可能感兴趣的:(python,python,开发语言,内置函数,lambda,map)