- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 概率密度基本概念
Summer_Anny
概率论
概率密度(ProbabilityDensity)是概率论中用于描述随机变量分布的一种方式,特别适用于连续随机变量。它并不是一个概率值,而是表示单位范围内的概率大小或“浓度”。更具体地说,概率密度表示在某个特定值附近,随机变量可能取到某个值的相对可能性。概率密度的几个关键点:概率密度与概率的关系:概率密度函数(PDF)本身并不能直接给出某个特定值发生的概率。因为对于连续随机变量,单一值的概率是零。然
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 【西瓜书】机器学习(周志华)学习问题记录
_linyu__
基础知识机器学习周志华西瓜书
简述西瓜书的鼎鼎大名早有耳闻,于是毫无疑问买来入门。写此文章的时候刚要做完第二章的练习题。在看的时候有一些感慨:需要一定的数理基础,尤其是概率论的内容。但是如果没学过也不建议直接去啃概率论,只要把相关的部分看看即可。周老师默认我们能力很强,所以有些地方说得不够详细,仅靠此书无法理解,需要自己另行查阅。有一些疑似谬误的地方,但是我自己能力较差,又苦于没有人佐证,所以并不敢说周老师一定错了。在看的过程
- 数学中的泛函分析与算子理论
AI天才研究院
计算AI大模型应用入门实战与进阶ChatGPT实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1数学的发展与泛函分析的产生数学作为一门科学,自古以来就在不断地发展和演变。从最初的算术、几何,到后来的微积分、线性代数,再到现代的拓扑学、概率论等,数学的研究领域不断扩展。泛函分析作为一门现代数学的分支,起源于20世纪初,它主要研究无限维空间中的函数和算子,为许多现代科学和工程问题提供了理论基础。1.2泛函分析与算子理论的关系泛函分析与算子理论密切相关。泛函分析主要研究无限维空间
- 【图像处理入门】8. 数学基础与优化:线性代数、概率与算法调优实战
小米玄戒Andrew
图像处理:从入门到专家图像处理线性代数算法python计算机视觉概率论算法调优
摘要图像处理的核心离不开数学工具的支撑。本文将深入解析线性代数、概率论在图像领域的应用,包括矩阵变换与图像几何操作的关系、噪声模型的数学描述,以及遗传算法、粒子群优化等智能算法在参数调优中的实践。通过理论结合代码案例,帮助读者掌握从数学原理到工程优化的完整链路。一、线性代数:图像变换的数学基石1.矩阵运算与图像几何变换在图像处理入门3中,我们通过仿射变换矩阵实现图像平移、旋转与缩放。其本质是线性代
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- (十七)深度学习之线性代数:核心概念与应用解析
只有左边一个小酒窝
深度学习深度学习线性代数人工智能
1线性代数在深度学习中的定位1.1深度学习的数学基础支柱线性代数是深度学习的核心数学工具之一,与微积分、概率论共同构成深度学习的理论基础。深度学习本质上是对高维数据的处理与建模,而线性代数提供了描述和操作高维空间中数据与变换的语言和方法。1.2从数据表示到模型运算的桥梁数据结构化表示:深度学习处理的图像、文本、音频等数据,通常被转化为向量、矩阵或张量(多维数组)。例如:图像:RGB图像可表示为三维
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 贝叶斯原理:解锁不确定性的智慧钥匙(全网最详细)
富士达幸运星
贝叶斯原理人工智能机器学习
在浩瀚的统计学与概率论海洋中,贝叶斯原理如同一盏明灯,照亮了我们在不确定性中前行的道路。它不仅仅是一种计算方法,更是一种深刻的思维方式,让我们能够基于有限的信息和先验知识,对未知事件做出更加合理的预测和判断。本文将带您一窥贝叶斯原理的奥秘,探索它如何在各个领域发光发热。一、贝叶斯原理的起源与核心概念起源贝叶斯原理得名于18世纪的英国数学家托马斯·贝叶斯(ThomasBayes),尽管他本人并未直接
- 为什么计算机不用e进制,按道理说e进制难道不是最高效的吗?e进制理论上为何被认为信息编码更优,但实际却难以实现?
前端
在现代计算机科学中,二进制无疑是计算机体系结构的根基,这一选择深刻影响了计算机的设计、性能以及发展方向。然而,数字系统的底层进制理论却远远不止二进制一种可能性。从数学的角度来看,常用进制中有一个特殊的数——数学常数e(自然对数的底,约等于2.71828),它在无数数学和物理领域扮演着极其重要的角色。e的独特性质使得很多数学函数的表达变得简洁自然,且e在连续复利、概率论、信息论等领域都有着独特的优势
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 随机变量及其分布:概率论的量化核心
Algo-hx
概率论与数理统计概率论
标题引言2随机变量及其分布2.1随机变量定义与分类2.2离散型随机变量:概率质量函数(PMF)概率分布律性质经典分布4.**各分布之间的关系**2.3分布函数(CDF):统一描述工具定义性质离散型应用2.4连续型随机变量:概率密度函数(PDF)定义性质经典分布均匀分布指数分布正态分布2.5随机变量函数的分布问题:已知XXX分布,求Y=g(X)Y=g(X)Y=g(X)分布解法框架重要公式(当ggg严
- 詹森不等式(Jensen’s Inequality)——EM算法的基础
phoenix@Capricornus
模式识别中的数学问题机器学习
詹森不等式(Jensen’sInequality)是数学中一个非常重要的不等式,广泛应用于概率论、统计学、凸优化、信息论等领域。它基于凸函数和凹函数的性质。一、基本定义设函数fff是定义在区间III上的凸函数(convexfunction),且随机变量XXX的取值落在III内,期望存在,则有:E[f(X)]⩾f(E[X]){E}[f(X)]\geqslantf({E}[X])E[f(X)]⩾f(E
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- Python概率论
麻辣小兔喵
Pythonpython概率论机器学习
概率论是数学的一个分支,它研究随机事件的概率和统计规律。在Python中,有很多强大的概率统计库可以帮助我们进行概率计算和数据分析,比如NumPy、SciPy和Pandas等库。下面我将为您介绍一些基本的概率概念以及如何在Python中实现它们。1.概率的基本概念在概率论中,我们通常会用以下的符号表示:P(A):表示事件A发生的概率,其取值范围在[0,1]之间。P(A|B):表示在事件B发生的条件
- C++概率论算法详解:理论基础与实践应用
清言神力,创作奇迹。接受福利,做篇笔记。参考资料[0]概率论中均值、方差、标准差介绍及C++/OpenCV/Eigen的三种实现.https://blog.csdn.net/fengbingchun/article/details/73323475.[4]C++中的随机数及其在算法竞赛中的使用-博客园.https://www.cnblogs.com/cmy-blog/p/random.html.[
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 【概率论基本概念01】点估计
无水先生
概率模型统计学模型概率论
一、说明关于概率和统计的学习,需要从根本上、原始概念中一点一点积累,这些基本概念的头绪特别多,一次性交待它们的面有困难,我们只能从点上入手,将点与点的关系连成面,最后完成系统学习的目的,这是一个长期任务。二、关于估计的基本概念2.1我们将学习哪些关于“估计”内容我们将主要指向如下学习内容:学习如何找到总体参数的最大似然估计量。学习如何找到总体参数的矩估计方法。学习如何检查估计量对于特定参数是否无偏
- 《算法导论(第4版)》阅读笔记:p1178-p1212
算法
《算法导论(第4版)》学习第25天,p1178-p1212总结,总计35页。一、技术总结1.AppendixC:CountingandProbability附录C介绍了计数理论(如:和规则,积规则,串,排列,组合,二项式系数,二项式界等),概率理论(如:样本空间,事件,概率论公理,离散概率分布,连续均匀概率分布,贝叶斯定理等),几何分布与二项分布,二项分布的尾部探究。第5章会时不时的涉及这些内容,
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那