【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2

目录

  • 前言
  • 一、蜂巢数据集
  • 二、YOLOv5s-ShuffleNetV2的实现
    • 2.1、backbone部分
      • 2.1.1、Focus替换
      • 2.1.2、所有Conv+C3替换为Shuffle_Block
      • 2.1.3、砍掉SPP
    • 2.2、head部分
      • 2.2.1、所有层结构输入输出channel相等
      • 2.2.2、所有C3结构全部替换为DWConv
      • 2.2.3、PAN的两个Concat改为ADD
    • 2.3、总结
  • 三、实验结果
  • Reference

前言

马上要找工作了,想总结下自己做过的几个小项目。

之前已经总结过了我做的第一个项目:xxx病虫害检测项目,github源码地址:HuKai97/FFSSD-ResNet。CSDN讲解地址:

  1. 【项目一、xxx病虫害检测项目】1、SSD原理和源码分析
  2. 【项目一、xxx病虫害检测项目】2、网络结构尝试改进:Resnet50、SE、CBAM、Feature Fusion
  3. 【项目一、xxx病虫害检测项目】3、损失函数尝试:Focal loss

而这篇主要介绍我做的第二个项目,也是实验室项目。这次是在YOLOv5的基础上进行的改进,同项目其他讲解:

  1. 【项目二、蜂巢检测项目】一、串讲各类经典的卷积网络:InceptionV1-V4、ResNetV1-V2、MobileNetV1-V3、ShuffleNetV1-V2、ResNeXt、Xception

如果对YOLOv5不熟悉的同学可以先看看我写的YOLOv5源码讲解CSDN:【YOLOV5-5.x 源码讲解】整体项目文件导航,注释版YOLOv5源码我也开源在了Github上:HuKai97/yolov5-5.x-annotations,欢迎大家star!

因为我的数据集相对简单,只需要检测单类别:蜂巢。所以在原始的YOLOv5的baseline上,mAP就已经达到了96%了,所以这篇工作主要是对YOLOv5进行轻量化探索,在保证mAP不下降太多的情况下,尽可能的提升速度,使模型能够部署在一些边缘设备上,如树莓派等。

改进的思路:利用ShuffleNetv2中的轻量化思路,改进YOLOv5s的网络结构,使网络更适合一些单类/几个类的数据集。

第二篇主要是介绍下如何对YOLOv5改进的,已经每一步改进的思路。

代码已全部上传GitHub: HuKai97/YOLOv5-ShuffleNetv2,欢迎大家star!

一、蜂巢数据集

蜂巢数据集是实验室的数据集,总共有1754张原图,划分为训练集:测试集=8:2。蜂巢图片样例:
【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2_第1张图片

二、YOLOv5s-ShuffleNetV2的实现

2.1、backbone部分

yaml配置文件:

backbone:
  # [from, number, module, args]
  [[-1, 1, conv_bn_relu_maxpool, [32]],    # 0-P2/4
   [-1, 1, Shuffle_Block, [116, 2]], # 1-P3/8
   [-1, 3, Shuffle_Block, [116, 1]], # 2
   [-1, 1, Shuffle_Block, [232, 2]], # 3-P4/16
   [-1, 7, Shuffle_Block, [232, 1]], # 4
   [-1, 1, Shuffle_Block, [464, 2]], # 5-P5/32
   [-1, 1, Shuffle_Block, [464, 1]], # 6
  ]

2.1.1、Focus替换

原始的YOLOv5s-5.0的stem是一个Focus切片操作,而v6是一个6x6Conv,这里仿照v6对Focus进行改进,改为1个3x3卷积(因为我们的任务本身不复杂,改为3x3后可以降低参数)

class conv_bn_relu_maxpool(nn.Module):
    def __init__(self, c1, c2):  # ch_in, ch_out
        super(conv_bn_relu_maxpool, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(c2),
            nn.ReLU(inplace=True),
        )
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

    def forward(self, x):
        return self.maxpool(self.conv(x))

2.1.2、所有Conv+C3替换为Shuffle_Block

【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2_第2张图片

def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()  # bs c h w
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups, channels_per_group, height, width)  # [bs,c,h,w] to [bs,group,channels_per_group,h,w]

    x = torch.transpose(x, 1, 2).contiguous()  # channel shuffle [bs,channels_per_group,group,h,w]

    # flatten
    x = x.view(batchsize, -1, height, width)  # [bs,c,h,w]

    return x

【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2_第3张图片

class Shuffle_Block(nn.Module):
    def __init__(self, inp, oup, stride):
        super(Shuffle_Block, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2  # channel split to 2 feature map
        assert (self.stride != 1) or (inp == branch_features << 1)

        # stride=2 图d 左侧分支=3x3DW Conv + 1x1Conv
        if self.stride > 1:
            self.branch1 = nn.Sequential(
                self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
                nn.BatchNorm2d(inp),
                nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        # 右侧分支=1x1Conv + 3x3DW Conv + 1x1Conv
        self.branch2 = nn.Sequential(
            nn.Conv2d(inp if (self.stride > 1) else branch_features,
                      branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
            nn.BatchNorm2d(branch_features),
            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        # x/out: [bs, c, h, w]
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)  # channel split to 2 feature map
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out

2.1.3、砍掉SPP

砍掉了SPP结构和后面的一个C3结构,因为SPP的并行操作会影响速度。

2.2、head部分

head:
  [[-1, 1, Conv, [96, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[ -1, 4 ], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, DWConvblock, [96, 3, 1]],  # 10

   [-1, 1, Conv, [96, 1, 1 ]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, DWConvblock, [96, 3, 1]],  # 14 (P3/8-small)

   [-1, 1, DWConvblock, [96, 3, 2]],
   [[-1, 11], 1, ADD, [1]],  # cat head P4
   [-1, 1, DWConvblock, [96, 3, 1]],  # 17 (P4/16-medium)

   [-1, 1, DWConvblock, [ 96, 3, 2]],
   [[-1, 7], 1, ADD, [1]],  # cat head P5
   [-1, 1, DWConvblock, [96, 3, 1]],  # 20 (P5/32-large)

   [[14, 17, 20], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.2.1、所有层结构输入输出channel相等

2.2.2、所有C3结构全部替换为DWConv

class DWConvblock(nn.Module):
    def __init__(self, in_channels, out_channels, k, s):
        super(DWConvblock, self).__init__()
        self.p = k // 2
        # depthwise conv
        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=k, stride=s,
                               padding=self.p, groups=in_channels, bias=False)
        self.bn1 = nn.BatchNorm2d(in_channels)
        # pointwise conv
        self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.conv1(x)  
        x = self.bn1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = F.relu(x)
        return x

2.2.3、PAN的两个Concat改为ADD

2.3、总结

ShuffleNeckV2提出的设计轻量化网络的四条准则:
G1、 卷积层的输入特征channel和输出特征channel要尽量相等;
G2、 尽量不要使用组卷积,或者组卷积g尽量小;
G3、 网络分支要尽量少,避免并行结构;
G4、 Element-Wise的操作要尽量少,如:ReLU、ADD、逐点卷积等;

YOLOv5s-ShuffleNetV2改进点总结:

  1. backbone的Focus替换为一个3x3Conv(c=32),因为v5-6.0就替换为了一个6x6Conv,这里为了进一步降低参数量,替换为3x3Conv;
  2. backbone所有Conv和C3替换为Shuffle Block;
  3. 砍掉SPP和后面的一个C3结构,SPP并行操作太多了(G3)
  4. head所有层输入输出channel=96(G1)
  5. head所有C3改为DWConv
  6. PAN的两个Concat改为ADD(channel太大,计算量太大,虽然违反了G4,但是计算量更小)

三、实验结果

GFLOPs=值/10^9
参数量(M)=值*4/1024/1024

模型 YOLOv5s YOLOv5s-ShuffleNetV2
shape 320x320 320x320
参数量 6.75M 0.69M
FLOPs 2.05G 0.32G
权重文件大小 13.6M 1.6M
[email protected] 0.967 0.955
[email protected]~0.95 0.885 0.84

参数量、计算量、权重文件大小都压缩到YOLOv5s的1/10,精度[email protected]掉了1%左右(96.7%->95.5%),[email protected]~0.95掉了5个点左右(88.5%->84%)。

检测结果(左图yolov5s,右图yolov5s-shufflenetv2):
【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2_第4张图片【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2_第5张图片

Reference

ppogg/YOLOv5-Lite

深度学习中模型计算量(FLOPs)和参数量(Params)的理解以及四种计算方法总结

你可能感兴趣的:(实战项目总结,目标检测,yolov5,shufflenetv2,轻量化模型)