⭐️ 本篇博客主要介绍读写锁和线程池相关的内容。我会给大家简单实现一个内存池,方便大家理解。
读写锁: 为了处理多线程中读数据比写数据更频繁(读多写少),给读加锁会带来效率降低的问题,引入了一种新的锁——读写锁。读写锁实际是一种特殊的自旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。
自旋锁: 对应自旋锁,只有一个线程获得锁资源(与互斥锁),其他未得到锁资源的线程不是挂起等待,而是处于自旋状态,不断去检测锁的状态(自旋锁应用于线程占在临界区内待的时间特别短的场景)
特点:
生产消费模型和读写锁的区别:
读写锁中读者不会拿走数据,但生产消费模型中的消费者会拿走数据,所以读写锁中读者与读者直接是可以共享数据,同时读的
读写锁的三种同步方案:
读写锁的行为:
当前锁的状态 | 读锁请求 | 写锁请求 |
---|---|---|
无锁 | 允许 | 允许 |
读锁 | 允许 | 阻塞 |
写锁 | 阻塞 | 阻塞 |
初始化:
函数原型:
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,const pthread_rwlockattr_t *restrict attr);
参数:
- restrict rwlock:要初始化的锁
- restrict attr:不关心,可以设置为空
返回值: 成功返回0,失败返回错误码
销毁:
函数原型:
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
参数:
- rwlock:要销毁的锁
返回值: 成功返回0,失败返回错误码
加锁和解锁:
函数原型:
// 读加锁 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock); // 写解锁 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock); // 解锁 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
参数:
- rwlock:锁
返回值: 成功返回0,失败返回错误码
线程池: 一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。可用线程数量应该取决于可用的并发处理器、处理器内核、内存、网络sockets等的数量
线程池的价值:
线程池与进程池:
线程池中首先需要有很多个线程,用户可以自己选择创建多少个线程。为了实现线程间的同步与互斥,还需要增加两个变量——互斥量和条件变量。我们还需要一个任务队列,主线程不断往里面塞任务,线程池的线程不断去处理。需要注意的是:这里的任务队列可以为空,但不能满,所以任务队列的容量不限定(实际场景中,任务队列容量不够就需要考虑换一台更大的服务器)
线程池的四个成员变量:
首先封装一个任务:
class Task
{
public:
Task(int a = 0, int b = 0)
:_a(a)
,_b(b)
{}
void Run()
{
std::cout << "pthread:" << pthread_self() << " has dealt with a task: " << _a << " + " << _b << " = "<< _a + _b << std::endl;
}
private:
int _a;
int _b;
};
线程池的主要代码框架(唤醒和等待操作都已经封装好):
#define DEFAULT_MAX_PTHREAD 5
class ThreadPool
{
public:
ThreadPool(int max_pthread = DEFAULT_MAX_PTHREAD)
:_max_thread(max_pthread)
{}
~ThreadPool()
{
pthread_mutex_destroy(&_mutex);
pthread_cond_destroy(&_cond);
}
public:
void LockQueue()
{
pthread_mutex_lock(&_mutex);
}
void UnlockQueue()
{
pthread_mutex_unlock(&_mutex);
}
void ThreadWait()
{
pthread_cond_wait(&_cond, &_mutex);
}
void WakeUpThread()
{
pthread_cond_signal(&_cond);
//pthread_cond_broadcast(&_cond);
}
bool IsEmpty()
{
return _q.empty();
}
private:
std::queue<Task*> _q;
int _max_thread;
pthread_mutex_t _mutex;
pthread_cond_t _cond;
};
注意:
创建多个线程可以用一个循环进行创建。需要注意的是,创建一个线程还需要提供一个线程启动后要执行的函数,这个启动函数只能有一个参数。如果把这个函数设置为成员函数,那么这个函数的第一个参数默认是this
指针,这样显然是不可行的,所以这里我们考虑把这个启动函数设置为静态的。但是设置为静态的成员函数又会面临一个问题:如何调用其他成员函数和成员变量? 所以这里我们考虑创建线程的时候,把this
指针传过去,让启动函数的arg
参数去接收即可
创建线程代码如下:
static void* Runtine(void* arg)
{
pthread_detach(pthread_self());
ThreadPool* this_p = (ThreadPool*)arg;
while (1){
this_p->LockQueue();
while (this_p->IsEmpty()){
this_p->ThreadWait();
}
Task* t;
this_p->Get(t);
this_p->UnlockQueue();
// 解锁后处理任务
t->Run();
delete t;
}
}
void ThreadPoolInit()
{
pthread_mutex_init(&_mutex, nullptr);
pthread_cond_init(&_cond, nullptr);
pthread_t t[_max_thread];
for(int i = 0; i < _max_thread; ++i)
{
pthread_create(t + i, nullptr, Runtine, this);
}
}
注意: 线程创建后,执行启动函数,在这个函数中,线程会去任务队列中取任务并处理,取任务前需要进行加锁的操作(如果队列为空需要挂起等待),取完任务然后进行解锁,然后处理任务,让其它线程去任务队列中取任务
放任务: 主线程无脑往任务队列中塞任务,塞任务之前进行加锁,塞完任务解锁,然后唤醒在条件变量下等待的队列
取任务: 线程池中的线程从任务队列中取任务,这里不需要加锁,因为这个动作在启动函数中加锁的那一段区间中被调用的,其实已经上锁了
代码如下:
// 放任务
void Put(Task* data)
{
LockQueue();
_q.push(data);
UnlockQueue();
WakeUpThread();
}
// 取任务
void Get(Task*& data)
{
data = _q.front();
_q.pop();
}
主线程负责创建线程池,然后无脑塞任务即可
代码如下:
int main()
{
srand((size_t)time(nullptr));
ThreadPool* tp = new ThreadPool;
tp->ThreadPoolInit();
while (1){
int x = rand()%10 + 1;
int y = rand()%10 + 1;
// 主线程一直塞任务
sleep(1);
tp->Put(new Task(x, y));
}
return 0;
}
上面的代码运行结果如下:
结果分析: 可以看到的是,五个线程是按照特定顺序去取并执行任务的。这是因为五个线程会在条件变量下的等待队列下进行等待,且主线程每次只唤醒队列的第一个线程,所以这五个线程是有一定的次序性的,如果使用pthread_cond_board
去执行唤醒的动作,结果会有所不同