- 成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
科研的力量
人工智能ChatGPTchatgpt人工智能
课程将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的研究人员还是好奇的从业者,本课程都将为分析和解释遥感数据开辟新的、有效的方法,使你的工作更具影响力和前沿性。遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面
- AI工作流平台对比分析
come11234
Ai人工智能
以下是和「扣子工作流」(KoFlow)类似的AI工作流平台对比分析,涵盖主流工具的核心特点、使用方式、优缺点及区别:一、主流工作流平台分类平台类型核心定位代表用户扣子(KoFlow)低代码AI流程中文场景优化,深度集成大模型中文开发者/企业LangChain代码框架开发者灵活构建AI链Python开发者/AI工程师LlamaIndex数据增强框架企业级RAG(检索增强生成)数据工程师/知识库应用M
- 字节工程师实战传授:用 Go 实现 AI 原生应用全流程
CSDN资讯
人工智能godeerfloweino
作为一名Gopher,你是否也曾在深夜看着Python生态的繁荣而心生羡慕?当LangChain、LlamaIndex等框架层出不穷,我们不禁会想,渴望已久的、专为Go语言打造的顺滑AI开发体验,究竟在哪里?我们常常看到一个个惊艳的AI应用,想用自己最熟悉的Go来复刻,却发现从Agent的定义到复杂的任务编排,每一步都充满着挑战,最终产出的“胶水代码”也难以维护和扩展,距离一个优雅的生产级应用相去
- MCP架构全解析:从核心原理到企业级实践
stormsha
人工智能架构c++服务器
欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:「stormsha的主页」,「stormsha的知识库」持续学习,不断总结,共同进步,为了踏实,做好当下事儿~非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨欢迎订阅本专栏✨✨TheStart点点关注,收藏不迷路文章目录1.M
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 风车OVF 1.2:AI开发环境完全指南 - 打造Linux下的Augment与Cursor一站式解决方案
yangshuo1281
augmentcursorlinux人工智能linux运维
风车OVF1.2:AI开发环境完全指南-打造Linux下的Augment与Cursor一站式解决方案一站式AI续杯|cursor|augment|linux|OVF|虚拟机前言在AI辅助编程工具快速发展的今天,Augment和Cursor已成为开发者不可或缺的编程助手。然而,Windows环境下的限制和复杂配置往往让用户望而却步。本文将详细介绍风车OVF1.2虚拟机系统,这是一个专为AI开发优化的
- Milvus知识库创建
importconfigparserimporttimeimportrandomfrompymilvusimportMilvusClientfrompymilvusimportDataTypecfp=configparser.RawConfigParser()cfp.read('config.ini')milvus_uri=cfp.get('example','uri')token=cfp.get
- RAG 每日一技(一):你的第一步就走错了?聊聊最基础的文本分块
ezl1fe
RAG每日一技人工智能后端语言模型
前言兄弟们,最近大模型是真火啊!但光火有什么用,咱得把它用在自己的项目里,解决实际问题才算牛。于是很多人撸起袖子就开干,想让大模型能回答自己文档、知识库里的问题。理想很丰满:我扔一堆文档进去,模型“嗖”一下就学会了,然后就有问必答,跟专家一样。现实很骨感:不管怎么喂数据,模型要么回答得牛头不对马嘴,要么干脆说“我不知道”。是不是感觉很熟悉?问题到底出在哪?很多时候,问题并非出在模型本身,而是出在了
- RAG检索增强生成在垂类AI应用效能优化中的应用
TechVision大咖圈
人工智能RAG检索增强生成垂类AI效能优化知识库向量检索
关键词:RAG、检索增强生成、垂类AI、效能优化、知识库、向量检索、大模型应用文章目录引言:为什么垂类AI需要RAGRAG技术原理深度解析垂类AI应用的痛点与挑战RAG在垂类AI中的解决方案效能优化的核心策略实战案例分析最佳实践与踩坑指南总结与展望引言:为什么垂类AI需要RAG在AI大模型满天飞的今天,每个企业都想搭建自己的"智能助手"。但是现实很骨感——通用大模型虽然知识渊博,却像个"万金油",
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- 职星学院企业培训系统:打造高效、个性化的在线学习平台
JAVA_staredu
学习
在当今快节奏的商业环境中,企业竞争日益激烈,员工培训成为提升企业核心竞争力的关键因素之一。为了满足企业对员工培训的需求,职星学院企业培训系统应运而生。该系统旨在为企业提供一个高效、便捷、个性化的在线学习平台,帮助员工不断提升专业技能和综合素质,从而推动企业的持续发展。系统概述职星学院企业培训系统是一款集知识库管理、培训计划制定、在线考试与测评、学习进度跟踪等功能于一体的综合性在线培训平台。系统采用
- 企业级RAG系统架构设计与实现指南(Java技术栈)
在未来等你
大模型应用开发AI技术编程JavaSpring
企业级RAG系统架构设计与实现指南(Java技术栈)开篇:RAG系统的基本概念与企业应用价值在当今快速发展的AI技术背景下,检索增强生成(Retrieval-AugmentedGeneration,RAG)已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合信息检索与自然语言生成(NLG),能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- 大模型——Obsidian加Cursor就是最强个人AI知识库
不二人生
大模型人工智能爬虫大模型Obsidiancursor
大模型——Obsidian加Cursor就是最强个人AI知识库这几天因为看到了Obsidian的浏览器剪藏插件的强大(这个下节讲)所以开始玩Obsidian,想要搞一个符合自己要求的本地知识库再加上AI的加持。也装了几个Obsidian的AI插件,结果发现配置非常复杂,体验不太行,想要顺畅使用的话得看文档,甚至还有看文档都无法结局的恶性Bug,我得搜Github其他人的问题才能搞定。这些插件的作用
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 庙算兵棋推演AI开发初探(支线-AI平台注意及tips)
超自然祈祷
智能决策人工智能
总是停留在stage阶段一的问题输出回放数据,在显示中发现一动不动,发现stage字段一直是1部署阶段……解决方法:代码层面需要有type=333的行为告诉引擎部署完毕。pip卸载重装兵棋引擎这个我每次关机后都得重新来一遍,很讨厌(经过试验,此举会重新复制一个.engine_config到python包的目录)删除某文件确定发出了部署命令还没效果,看看你的用户根目录(root或者用户名)下有没有.
- 【AI智能体】Coze 搭建个人旅游规划助手实战详解
小码农叔叔
AI大模型应用到项目实战高手AI智能体实战应用高手Coze制作旅游规划助手Coze制作旅游规划机器人coze搭建旅游助手coze搭建旅游助手机器人coze制作旅游助手coze机器人coze使用详解
目录一、前言二、Coze工作流介绍2.1什么是工作流2.2Coze工作流作用2.3Coze工作流节点介绍2.3.1开始节点2.3.2大模型节点2.3.3插件节点2.3.4知识库节点2.3.5条件节点三、基于Coze搭建旅游规划助手操作过程3.1创建应用3.2创建工作流3.2.1创建工作流3.2.2配置工作流3.2.2.1配置开始节点3.2.2.2增加第一个大模型节点3.2.2.3增加第二个大模型节
- 【5步通关!】C#企业级知识库实战——从0到1打造智能知识共享平台的魔法指南!
墨瑾轩
一起学学C#【三】c#开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣你的团队还在用“纸质文件+Excel”管理知识?或者想让员工像“知识魔法师”一样秒速找到所需信息?今天,我们将用5个“魔法步骤”,手把手教你用C#打造企业级知识共享平台!无论你是“技术小白”还是“架构老司机”,这篇文章都将为你揭秘如何让知识库像“超级搜索引擎”
- 企业级知识库私有化部署:腾讯混元+云容器服务TKE实战
大熊计算机
#腾讯云语言模型
1.背景需求分析在金融、医疗等数据敏感行业,企业需要构建完全自主可控的知识库系统。本文以某证券机构智能投研系统为原型,演示如何基于腾讯混元大模型与TKE容器服务实现:千亿级参数模型的私有化部署金融领域垂直场景微调高并发低延迟推理服务全链路安全合规方案1.1典型技术挑战#性能基准测试数据(单位:QPS)|场景|裸机部署|容器化部署|优化后||--------------------|--------
- 企业级AI开发利器:Spring AI框架深度解析与实战_spring ai实战
AI大模型-海文
人工智能springpython算法开发语言java机器学习
企业级AI开发利器:SpringAI框架深度解析与实战一、前言:Java生态的AI新纪元在人工智能技术爆发式发展的今天,Java开发者面临着一个新的挑战:如何将大语言模型(LLMs)和生成式AI(GenAI)无缝融入企业级应用。传统的Java生态缺乏统一的AI集成方案,开发者往往需要为不同AI供应商(如OpenAI、阿里云、HuggingFace)编写大量重复的接口适配代码,这不仅增加了开发成本,
- Spring AI入门教学:从零搭建智能应用(2025最新实践)
程序员子固
spring人工智能javaai
目录引言:为什么选择SpringAI?一、环境搭建(附避坑指南)1.开发环境要求2.依赖配置二、实战:智能客服接入(代码级详解)1.配置模型参数2.实现流式对话接口三、高级功能:多模态AI开发1.图像描述生成2.智能文档处理四、开发者工具箱1.调试技巧2.性能优化五、学习路径建议引言:为什么选择SpringAI?随着生成式AI技术的爆发式发展(如OpenAI的GPT-4.5新动态24),Java开
- 如何构建知识库
追逐此刻
其他其他
构建个人知识库是一个系统化的过程,需要结合工具选择、信息管理和持续优化。以下是分步骤的实用指南,包含现代工具和方法的建议:一、明确知识库定位(Why)核心目标学习型:支持学术研究/职业发展(如医学生构建临床知识体系)创作型:支撑内容产出(如自媒体作者的选题库)项目型:管理特定领域知识(如程序员的技术栈文档)领域聚焦建议采用「T型策略」:1个深度领域+3个辅助领域(如主攻机器学习,辅修心理学/设计/
- 如何用AI开发完整的小程序<10>—总结
鱼雀AIGC
AI开发编程人工智能小程序ai编程AIGCAI编程
通过之前9节的学习。如何用Ai制作一款简单小程序的内容就已经都介绍完了。总结起来就以下几点:1、搭建开发制作环境2、创建页面(需要手动)3、在页面上制作UI效果(让Ai搞,自己懂了后可以自己调)4、实现代码交互功能(让Ai搞,自己不需要懂)5、如果需要引入外部资源,比如图片,音频,js配置文件等,就将对应的文件丢到项目里,然后告诉AI文件的位置,让AI自己去取然后实现对应功能即可。(图片,视频的引
- AI开发tool提示词
开水好喝
测试工具java服务器前端人工智能
Playwright处理module元素及其子节点[TASK]生成一个isModuleElementObjectfunction,若element的qa-testclass在对象moduleObj{"qa-test-mycourses-course":"qa-test-mycourses-course-title","qa-test-discussion-module":"qa-test-disc
- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- 大模型——Dify:知识库与外部知识库
不二人生
大模型人工智能大模型dify
Dify:知识库与外部知识库相比于AI大模型内置的静态预训练数据,知识库中的内容能够实时更新,确保LLM可以访问到最新的信息,避免因信息过时或遗漏而产生的问题。知识库与文档开发者可以通过此方式确保LLM不仅仅依赖于训练数据中的知识,还能够处理来自实时文档和数据库的动态数据,从而提高回答的准确性和相关性。https://docs.dify.ai/zh-hans/guides/knowledge-ba
- GPT-5企业级应用落地指南:70个工业场景实战部署全景(2025)
知识产权13937636601
计算机GPT-5API
摘要:随着GPT-5在2025年全面开放企业API,其多模态理解、自主任务规划、超长上下文(128Ktokens)能力正颠覆传统工业智能化范式。本指南基于全球200+企业实测案例,提炼70个工业场景的部署方案,涵盖研发设计、生产制造、供应链管理等九大领域。核心解决三大落地挑战:安全合规部署方案(企业知识库隔离训练、区块链存证)、行业场景迁移(小样本领域适应、多模态提示工程)、成本效率优化(MoE稀
- AI模型开发的全生命周期管理体系
TechVision大咖圈
人工智能AI模型开发全生命周期管理MLOps模型部署数据管理模型监控
从"炼丹"到工程化:让AI模型开发不再是玄学目录1.引言:告别AI开发的"野蛮生长"时代2.生命周期管理体系总览3.数据管理阶段:万丈高楼平地起4.模型开发阶段:从想法到现实5.训练与调优阶段:让模型"学会"思考6.部署与监控阶段:上线不是终点7.维护与迭代阶段:持续进化的秘诀8.总结:构建可持续的AI开发生态1.引言:告别AI开发的"野蛮生长"时代还记得那些年我们"炼丹"的日子吗?一个模型训练几
- 医疗大模型深度剖析:腾讯医疗大模型案例,引领智能医疗新时代!
腾讯医疗大模型是混元大模型的医疗版。在DeepSeek爆火之前,腾讯健康已经依据医疗细分场景的具体需求,以腾讯自研的混元大模型,打造出医疗行业大模型。DeepSeek-R1发布后,腾讯健康第一时间完成了混元大模型与DeepSeek的融合。腾讯医疗大模型深度融合医学知识库与自然语言处理技术,旨在为医疗行业提供智能化的辅助解决方案。通过海量医学文献、临床指南、电子病历等专业数据训练,具备强大的医学知识
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$