人工智能-作业2:例题程序复现

反向传播算法的原理是利用链式求导法则计算实际输出结果与理想结果之间的损失函数对每个权重参数或偏置项的偏导数,然后根据优化算法逐层反向地更新权重或偏置项,它采用了前向-后向传播的训练方式,通过不断调整模型中的参数,使损失函数达到收敛,从而构建准确的模型结构。

人工智能-作业2:例题程序复现_第1张图片
人工智能-作业2:例题程序复现_第2张图片

计算过程:

(w5~w8)以w5为例的梯度计算过程
人工智能-作业2:例题程序复现_第3张图片
(w1~w4)以w1为例的梯度计算过程:
人工智能-作业2:例题程序复现_第4张图片

参数更新过程:

人工智能-作业2:例题程序复现_第5张图片

def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 5
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8

重复计算可以不断修正w的值。

代码实现

import numpy as np


def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(round(out_o1, 5), round(out_o2, 5))

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    print("损失函数:均方误差")
    print(round(error, 5))

    return out_o1, out_o2, out_h1, out_h2


def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2
    # print(round(d_o1, 2), round(d_o2, 2))

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    # print(round(d_w5, 2), round(d_w7, 2))
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
    # print(round(d_w6, 2), round(d_w8, 2))

    d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
    # print(round(d_w1, 2), round(d_w3, 2))

    d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
    # print(round(d_w2, 2), round(d_w4, 2))
    print("反向传播:误差传给每个权值")
    print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 5
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":
    w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
    x1, x2 = 0.5, 0.3
    y1, y2 = 0.23, -0.07
    print("=====输入值:x1, x2;真实输出值:y1, y2=====")
    print(x1, x2, y1, y2)
    print("=====更新前的权值=====")
    print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

    for i in range(1000):
        print("=====第" + str(i) + "轮=====")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值")
    print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

运行结果:

=输入值:x1, x2;真实输出值:y1, y2=
0.5 0.3 0.23 -0.07
=更新前的权值=
0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
=第0轮=
正向计算:o1 ,o2
0.47695 0.5287
损失函数:均方误差
0.20971
反向传播:误差传给每个权值
0.01458 0.01304 0.00875 0.00782 0.03463 0.08387 0.03049 0.07384
=第1轮=
正向计算:o1 ,o2
0.43556 0.42626
损失函数:均方误差
0.14427
反向传播:误差传给每个权值
0.0117 0.01039 0.00702 0.00623 0.02779 0.06674 0.02446 0.05873



=第998轮=
正向计算:o1 ,o2
0.23038 0.00955
损失函数:均方误差
0.00316
反向传播:误差传给每个权值
4e-05 3e-05 2e-05 2e-05 3e-05 0.00029 2e-05 0.00026
=第999轮=
正向计算:o1 ,o2
0.23038 0.00954
损失函数:均方误差
0.00316
反向传播:误差传给每个权值
4e-05 3e-05 2e-05 2e-05 3e-05 0.00029 2e-05 0.00026
更新后的权值
-0.84 -1.3 -0.13 0.06 -1.55 -7.31 -1.75 -5.23

反向传播代码更新:(2022/05/08)

def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2

    d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2

    print("w的梯度:", round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8

参考资料

【人工智能导论:模型与算法】MOOC 8.3 误差后向传播(BP) 例题 编程验证
【人工智能导论:模型与算法】MOOC 8.3 误差后向传播(BP) 例题 【第三版】
浙江大学-人工智能:模型与算法-吴飞
反向传播算法实例
前向传播算法(Forward propagation)与反向传播算法(Back propagation)
以上为人工智能-作业2:例题程序复现的全部内容!

你可能感兴趣的:(人工智能实验,python,人工智能)