python多进程反而慢_Python多线程和多进程谁更快?

python多进程和多线程谁更快

python3.6

threading和multiprocessing

四核+三星250G-850-SSD

自从用多进程和多线程进行编程,一致没搞懂到底谁更快。网上很多都说python多进程更快,因为GIL(全局解释器锁)。但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图)

这里先来一张程序的结果图,说明线程和进程谁更快

一些定义

并行是指两个或者多个事件在同一时刻发生。并发是指两个或多个事件在同一时间间隔内发生

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一个程序的执行实例就是一个进程。

实现过程

而python里面的多线程显然得拿到GIL,执行code,最后释放GIL。所以由于GIL,多线程的时候拿不到,实际上,它是并发实现,即多个事件,在同一时间间隔内发生。

但进程有独立GIL,所以可以并行实现。因此,针对多核CPU,理论上采用多进程更能有效利用资源。

现实问题

在网上的教程里面,经常能见到python多线程的身影。比如网络爬虫的教程、端口扫描的教程。

这里拿端口扫描来说,大家可以用多进程实现下面的脚本,会发现python多进程更快。那么不就是和我们分析相悖了吗?

import sys,threading

from socket import *

host = "127.0.0.1" if len(sys.argv)==1 else sys.argv[1]

portList = [i for i in range(1,1000)]

scanList = []

lock = threading.Lock()

print('Please waiting... From ',host)

def scanPort(port):

try:

tcp = socket(AF_INET,SOCK_STREAM)

tcp.connect((host,port))

except:

pass

else:

if lock.acquire():

print('[+]port',port,'open')

lock.release()

finally:

tcp.close()

for p in portList:

t = threading.Thread(target=scanPort,args=(p,))

scanList.append(t)

for i in range(len(portList)):

scanList[i].start()

for i in range(len(portList)):

scanList[i].join()

谁更快

因为python锁的问题,线程进行锁竞争、切换线程,会消耗资源。所以,大胆猜测一下:

在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率。

大家看一下下面的代码:

import time

import threading

import multiprocessing

max_process = 4

max_thread = max_process

def fun(n,n2):

#cpu密集型

for i in range(0,n):

for j in range(0,(int)(n*n*n*n2)):

t = i*j

def thread_main(n2):

thread_list = []

for i in range(0,max_thread):

t = threading.Thread(target=fun,args=(50,n2))

thread_list.append(t)

start = time.time()

print(' [+] much thread start')

for i in thread_list:

i.start()

for i in thread_list:

i.join()

print(' [-] much thread use ',time.time()-start,'s')

def process_main(n2):

p = multiprocessing.Pool(max_process)

for i in range(0,max_process):

p.apply_async(func = fun,args=(50,n2))

start = time.time()

print(' [+] much process start')

p.close()#关闭进程池

p.join()#等待所有子进程完毕

print(' [-] much process use ',time.time()-start,'s')

if __name__=='__main__':

print("[++]When n=50,n2=0.1:")

thread_main(0.1)

process_main(0.1)

print("[++]When n=50,n2=1:")

thread_main(1)

process_main(1)

print("[++]When n=50,n2=10:")

thread_main(10)

process_main(10)

结果如下:

可以看出来,当对cpu使用率越来越高的时候(代码循环越多的时候),差距越来越大。验证我们猜想

CPU密集型代码(各种循环处理、计数等等)

IO密集型代码(文件处理、网络爬虫等)

判断方法:

直接看CPU占用率, 硬盘IO读写速度

计算较多->CPU;时间等待较多(如网络爬虫)->IO

请自行百度

参考

你可能感兴趣的:(python多进程反而慢)