开源视觉SLAM方案

1. Geometric SLAM

这一类是传统的基于特征点、直接法或半直接法的 SLAM,虽说传统,但 2019 年也新诞生了 9 个开源方案。

1.1. PTAM

论文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed andAugmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposiumon. IEEE, 2007: 225-234.

代码:https://github.com/Oxford-PTAM/PTAM-GPL

工程地址:http://www.robots.ox.ac.uk/~gk/PTAM/

作者其他研究:http://www.robots.ox.ac.uk/~gk/publications.html

1.2. S-PTAM(双目 PTAM)

论文:Taihú Pire,Thomas Fischer, Gastón Castro,Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and AutonomousSystems, 2017.

代码:https://github.com/lrse/sptam

作者其他论文:Castro G,Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM throughconstrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.

1.3. MonoSLAM

论文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM:Real-time single camera SLAM[J]. IEEE transactions on patternanalysis and machine intelligence, 2007, 29(6): 1052-1067.

代码:https://github.com/hanmekim/SceneLib2

1.4. ORB-SLAM2

论文:Mur-Artal R, Tardós J D. Orb-slam2: Anopen-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEETransactions on Robotics, 2017, 33(5): 1255-1262.

代码:https://github.com/raulmur/ORB_SLAM2

作者其他论文:

单目半稠密建图:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

VIORB:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

多地图:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: arobust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.

以下 5, 6, 7, 8 几项是 TUM 计算机视觉组全家桶

1.5. DSO

论文:Engel J, Koltun V, Cremers D. Direct sparseodometry[J]. IEEE transactions on pattern analysis and machineintelligence, 2017, 40(3): 611-625.

代码:https://github.com/JakobEngel/dso

双目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry withstereo cameras[C]//Proceedings of the IEEE International Conference onComputer Vision. 2017: 3903-3911.

VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparsevisual-inertial odometry using dynamic marginalization[C]//2018 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2018:2510-2517.

1.6. LDSO

高翔在 DSO 上添加闭环的工作

论文:Gao X, Wang R, Demmel N, et al. LDSO: Directsparse odometry with loop closure[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:2198-2204.

代码:https://github.com/tum-vision/LDSO

1.7. LSD-SLAM

论文:Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//Europeanconference on computer vision. Springer, Cham, 2014: 834-849.

代码:https://github.com/tum-vision/lsd_slam

1.8. DVO-SLAM

论文:Kerl C, Sturm J, Cremers D. Dense visualSLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conferenceon Intelligent Robots and Systems. IEEE, 2013: 2100-2106.

代码 1:https://github.com/tum-vision/dvo_slam

代码 2:https://github.com/tum-vision/dvo

其他论文:

Kerl C, Sturm J,Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEEinternational conference on robotics and automation. IEEE, 2013:3748-3754.

Steinbrücker F,Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEEinternational conference on computer vision workshops (ICCV Workshops). IEEE, 2011:719-722.

1.9. SVO

苏黎世大学机器人与感知课题组

论文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEEinternational conference on robotics and automation (ICRA). IEEE, 2014:15-22.

代码:https://github.com/uzh-rpg/rpg_svo

Forster C, ZhangZ, Gassner M, et al. SVO: Semidirect visual odometry for monocular andmulticamera systems[J]. IEEE Transactions on Robotics, 2016,33(2): 249-265.

1.10. DSM

论文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparsemapping[J]. arXiv preprint arXiv:1904.06577, 2019.

代码:https://github.com/jzubizarreta/dsm

1.11. openvslam

论文:Sumikura S,Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedingsof the 27th ACM International Conference on Multimedia. 2019: 2292-2295.

代码:https://github.com/xdspacelab/openvslam

1.12. se2lam(地面车辆位姿估计的视觉里程计)

论文:Zheng F, Liu Y H. Visual-OdometricLocalization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:3556-3562.

代码:https://github.com/izhengfan/se2lam

作者的另外一项工作

论文:Zheng F, Tang H,Liu Y H. Odometry-vision-basedground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEEtransactions on cybernetics, 2018, 49(7): 2652-2663.

代码:https://github.com/izhengfan/se2clam

1.13. GraphSfM(基于图的并行大尺度 SFM)

论文:Chen Y, Shen S,Chen Y, et al. Graph-BasedParallel Large Scale Structure from Motion[J]. arXivpreprint arXiv:1912.10659, 2019.

代码:https://github.com/AIBluefisher/GraphSfM

1.14. LCSD_SLAM(松耦合的半直接法单目 SLAM)

论文:Lee S H, Civera J. Loosely-Coupledsemi-direct monocular SLAM[J]. IEEE Robotics and AutomationLetters, 2018, 4(2): 399-406.

代码:https://github.com/sunghoon031/LCSD_SLAM;谷歌学术 ;演示视频

作者另外一篇关于单目尺度的文章代码开源:Lee S H, deCroon G. Stability-based scale estimation for monocular SLAM[J]. IEEERobotics and Automation Letters, 2018, 3(2): 780-787.

1.15. RESLAM(基于边的 SLAM)

论文:Schenk F, Fraundorfer F. RESLAM: Areal-time robust edge-based SLAM system[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 154-160.

代码:https://github.com/fabianschenk/RESLAM

1.16. scale_optimization(将单目 DSO 拓展到双目)

论文:Mo J, Sattar J. ExtendingMonocular Visual Odometry to Stereo Camera System by Scale Optimization[C].International Conference on Intelligent Robots and Systems (IROS), 2019.

代码:https://github.com/jiawei-mo/scale_optimization

1.17. BAD-SLAM(直接法 RGB-D SLAM)

论文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2019:134-144.

代码:https://github.com/ETH3D/badslam

1.18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

论文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedingsof the IEEE International Conference on Computer Vision. 2019:1110-1120.

代码:https://github.com/zdzhaoyong/GSLAM

1.19. ARM-VO(运行于 ARM 处理器上的单目 VO)

论文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for groundvehicles on ARM CPUs[J]. Machine Vision and Applications, 2019:1-10.

代码:https://github.com/zanazakaryaie/ARM-VO

1.20. cvo-rgbd(直接法 RGB-D VO)

论文:Ghaffari M, Clark W, Bloch A, et al. ContinuousDirect Sparse Visual Odometry from RGB-D Images[J]. arXivpreprint arXiv:1904.02266, 2019.

代码:https://github.com/MaaniGhaffari/cvo-rgbd

2. Semantic / Learning SLAM

SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM 的某一个步骤(比如 VO,闭环等)。个人对后者没太关注,也同样欢迎大家在issue中分享。

2.1. MsakFusion

论文:Runz M, Buffier M, Agapito L. Maskfusion:Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEEInternational Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018:10-20.

代码:https://github.com/martinruenz/maskfusion

2.2. SemanticFusion

论文:McCormac J, Handa A, Davison A, et al. Semanticfusion:Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEEInternational Conference on Robotics and automation (ICRA). IEEE, 2017:4628-4635.

代码:https://github.com/seaun163/semanticfusion

2.3. semantic_3d_mapping

论文:Yang S, Huang Y, Scherer S. Semantic 3Doccupancy mapping through efficient high order CRFs[C]//2017IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2017: 590-597.

代码:https://github.com/shichaoy/semantic_3d_mapping

2.4. Kimera(实时度量与语义定位建图开源库)

论文:Rosinol A, AbateM, Chang Y, et al. Kimera: anOpen-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXivpreprint arXiv:1910.02490, 2019.

代码:https://github.com/MIT-SPARK/Kimera

2.5. NeuroSLAM(脑启发式 SLAM)

论文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3Denvironments[J]. Biological Cybernetics, 2019: 1-31.

代码:https://github.com/cognav/NeuroSLAM

第四作者就是 Rat SLAM 的作者,文章也比较了十余种脑启发式的 SLAM

2.6. gradSLAM(自动分区的稠密 SLAM)

论文:Jatavallabhula K M, Iyer G, Paull L. gradSLAM:Dense SLAM meets Automatic Differentiation[J]. arXivpreprint arXiv:1910.10672, 2019.

代码(预计 20 年 4 月放出):https://github.com/montrealrobotics/gradSLAM

2.7. ORB-SLAM2 + 目标检测/分割的方案语义建图

https://github.com/floatlazer/semantic_slam

https://github.com/qixuxiang/orb-slam2_with_semantic_labelling

https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic

2.8. SIVO(语义辅助特征选择)

论文:Ganti P, Waslander S. NetworkUncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16thConference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.

代码:https://github.com/navganti/SIVO

2.9. FILD(临近图增量式闭环检测)

论文:Shan An, Guangfu Che, Fangru Zhou,Xianglong Liu, Xin Ma, Yu Chen.Fast and Incremental Loop Closure Detection usingProximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS2019)

代码:https://github.com/AnshanTJU/FILD

2.10. object-detection-sptam(目标检测与双目 SLAM)

论文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo VisualSLAM System[J]. Journal of Intelligent & Robotic Systems, 2019:1-10.

代码:https://github.com/CIFASIS/object-detection-sptam

2.11. Map Slammer(单目深度估计 + SLAM)

论文:Torres-Camara J M, Escalona F, Gomez-DonosoF, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps withEstimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019:563-574.

代码:https://github.com/jmtc7/mapSlammer

2.12. NOLBO(变分模型的概率 SLAM)

论文:Yu H, Lee B. Not Only LookBut Observe: Variational Observation Model of Scene-Level 3D Multi-ObjectUnderstanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.

代码:https://github.com/bogus2000/NOLBO

3. Multi-Landmarks / Object SLAM

其实多路标的点、线、平面 SLAM 和物体级 SLAM 完全可以分类在 Geometric SLAM 和 Semantic SLAM 中,但个人对这一方向比较感兴趣(也是我的研究生课题),所以将其独立出来,开源方案相对较少,但很有意思。

3.1. PL-SVO(点线 SVO)

论文:Gomez-Ojeda R, Briales J, Gonzalez-JimenezJ. PL-SVO: Semi-direct Monocular Visual Odometry by combiningpoints and line segments[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:4211-4216.

代码:https://github.com/rubengooj/pl-svo

3.2. stvo-pl(双目点线 VO)

论文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilisticcombination of points and line segments[C]//2016 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.

代码:https://github.com/rubengooj/stvo-pl

3.3. PL-SLAM(点线 SLAM)

论文:Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A,et al. PL-SLAM: aStereo SLAM System through the Combination of Points and Line Segments[J]. arXivpreprint arXiv:1705.09479, 2017.

代码:https://github.com/rubengooj/pl-slam

Gomez-Ojeda R,Moreno F A, Zuñiga-Noël D, et al.PL-SLAM: a stereo SLAM system through the combination ofpoints and line segments[J]. IEEE Transactions on Robotics, 2019,35(3): 734-746.

3.4. PL-VIO

论文:He Y, Zhao J, Guo Y, et al. PL-VIO:Tightly-coupled monocular visual–inertial odometry using point and linefeatures[J]. Sensors, 2018, 18(4): 1159.

代码:https://github.com/HeYijia/PL-VIO

VINS + 线段:https://github.com/Jichao-Peng/VINS-Mono-Optimization

3.5. lld-slam(用于 SLAM 的可学习型线段描述符)

论文:Vakhitov A, Lempitsky V. Learnable line segment descriptor for visual SLAM[J]. IEEEAccess, 2019, 7: 39923-39934.

代码:https://github.com/alexandervakhitov/lld-slam;Video

点线结合的工作还有很多,国内的比如 + 上交邹丹平老师的 Zou D, Wu Y, Pei L, et al.StructVIO:visual-inertial odometry with structural regularity of man-made environments[J]. IEEETransactions on Robotics, 2019, 35(4): 999-1013. + 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visualSLAM with point and line features[C]//2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2017:1775-1782.

3.6. PlaneSLAM

论文:Wietrzykowski J. On the representation of planes for efficient graph-basedslam with high-level features[J]. Journal of Automation MobileRobotics and Intelligent Systems, 2016, 10.

代码:https://github.com/LRMPUT/PlaneSLAM

作者另外一项开源代码,没有找到对应的论文:https://github.com/LRMPUT/PUTSLAM

3.7. Eigen-Factors(特征因子平面对齐)

论文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame andTime-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2019:1278-1284.

代码:https://gitlab.com/gferrer/eigen-factors-iros2019

3.8. PlaneLoc

论文:Wietrzykowski J, Skrzypczyński P. PlaneLoc:Probabilistic global localization in 3-D using local planar features[J]. Roboticsand Autonomous Systems, 2019, 113: 160-173.

代码:https://github.com/LRMPUT/PlaneLoc

3.9. Pop-up SLAM

论文:Yang S, Song Y, Kaess M, et al. Pop-up slam:Semantic monocular plane slam for low-texture environments[C]//2016IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2016: 1222-1229.

代码:https://github.com/shichaoy/pop_up_slam

3.10. Object SLAM

论文:Mu B, Liu S Y, Paull L, et al. Slam withobjects using a nonparametric pose graph[C]//2016 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2016:4602-4609.

代码:https://github.com/BeipengMu/objectSLAM

3.11. voxblox-plusplus(物体级体素建图)

论文:Grinvald M, Furrer F, Novkovic T, et al. Volumetricinstance-aware semantic mapping and 3D object discovery[J]. IEEERobotics and Automation Letters, 2019, 4(3): 3037-3044.

代码:https://github.com/ethz-asl/voxblox-plusplus

3.12. Cube SLAM

论文:Yang S, Scherer S. Cubeslam:Monocular 3-d object slam[J]. IEEE Transactions on Robotics, 2019,35(4): 925-938.

代码:https://github.com/shichaoy/cube_slam

也有很多有意思的但没开源的物体级 SLAM

Ok K, Liu K,Frey K, et al. RobustObject-based SLAM for High-speed Autonomous Navigation[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:669-675.

Li J, Meger D,Dudek G. SemanticMapping for View-Invariant Relocalization[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:7108-7115.

Nicholson L,Milford M, Sünderhauf N. Quadricslam:Dual quadrics from object detections as landmarks in object-oriented slam[J]. IEEERobotics and Automation Letters, 2018, 4(1): 1-8.

4. VIO / VISLAM

在传感器融合方面只关注了视觉 + 惯导,其他传感器像 LiDAR,GPS 关注较少(SLAM 太复杂啦 -_-!)。视惯融合的新工作也相对较少,基本一些经典的方案就够用了。

4.1. msckf_vio

论文:Sun K, Mohta K, Pfrommer B, et al. Robust stereovisual inertial odometry for fast autonomous flight[J]. IEEERobotics and Automation Letters, 2018, 3(2): 965-972.

代码:https://github.com/KumarRobotics/msckf_vio

4.2. rovio

论文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-basedapproach[C]//2015 IEEE/RSJ international conference onintelligent robots and systems (IROS). IEEE, 2015: 298-304.

代码:https://github.com/ethz-asl/rovio

4.3. R-VIO

论文:Huai Z, Huang G. Robocentricvisual-inertial odometry[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:6319-6326.

代码:https://github.com/rpng/R-VIO

4.4. okvis

论文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinearoptimization[J]. The International Journal of Robotics Research, 2015,34(3): 314-334.

代码:https://github.com/ethz-asl/okvis

4.5. VIORB

论文:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

代码:https://github.com/jingpang/LearnVIORB(VIORB 本身是没有开源的,这是王京大佬复现的一个版本)

4.6. VINS-mono

论文:Qin T, Li P, Shen S. Vins-mono: Arobust and versatile monocular visual-inertial state estimator[J]. IEEETransactions on Robotics, 2018, 34(4): 1004-1020.

代码:https://github.com/HKUST-Aerial-Robotics/VINS-Mono

双目版 VINS-Fusion:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

移动段 VINS-mobile:https://github.com/HKUST-Aerial-Robotics/VINS-Mobile

4.7. VINS-RGBD

论文:Shan Z, Li R, Schwertfeger S. RGBD-InertialTrajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019,19(10): 2251.

代码:https://github.com/STAR-Center/VINS-RGBD

4.8. Open-VINS

论文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertialestimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation:Challenges and Applications, Macau, China. IROS 2019.

代码:https://github.com/rpng/open_vins

4.9. versavis(多功能的视惯传感器系统)

论文:Tschopp F, RinerM, Fehr M, et al. VersaVIS—AnOpen Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020,20(5): 1439.

代码:https://github.com/ethz-asl/versavis

4.10 CPI(视惯融合的封闭式预积分)

论文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-basedvisual–inertial navigation[J]. The International Journal ofRobotics Research, 2018.

代码:https://github.com/rpng/cpi

5. Dynamic SLAM

动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少,欢迎补充issue。

5.1. DynamicSemanticMapping(动态语义建图)

论文:Kochanov D, Ošep A, Stückler J, et al. Scene flow propagation for semantic mapping and objectdiscovery in dynamic street scenes[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:1785-1792.

代码:https://github.com/ganlumomo/DynamicSemanticMapping

5.2. DS-SLAM(动态语义 SLAM)

论文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: Asemantic visual SLAM towards dynamic environments[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 1168-1174.

代码:https://github.com/ivipsourcecode/DS-SLAM

5.3. Co-Fusion(实时分割与跟踪多物体)

论文:Rünz M, Agapito L. Co-fusion:Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2017:4471-4478.

代码:https://github.com/martinruenz/co-fusion

5.4. DynamicFusion

论文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigidscenes in real-time[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2015: 343-352.

代码:https://github.com/mihaibujanca/dynamicfusion

5.5. ReFusion(动态场景利用残差三维重建)

论文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3DReconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXivpreprint arXiv:1905.02082, 2019.

代码:https://github.com/PRBonn/refusion

6. Mapping

针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建本身就是个很大的话题,开源代码也很多,以下方案收集地可能也不太全。

6.1. InfiniTAM(跨平台 CPU 实时重建)

论文:Prisacariu V A,Kähler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3dreconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.

代码:https://github.com/victorprad/InfiniTAM

6.2. BundleFusion

论文:Dai A, Nießner M, Zollhöfer M, et al. Bundlefusion:Real-time globally consistent 3d reconstruction using on-the-fly surfacereintegration[J]. ACM Transactions on Graphics (TOG), 2017,36(4): 76a.

代码:https://github.com/niessner/BundleFusion

6.3. KinectFusion

论文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10thIEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011:127-136.

代码:https://github.com/chrdiller/KinectFusionApp

6.4. ElasticFusion

论文:Whelan T, Salas-Moreno R F, Glocker B, etal. ElasticFusion: Real-time dense SLAM and light sourceestimation[J]. The International Journal of Robotics Research, 2016,35(14): 1697-1716.

代码:https://github.com/mp3guy/ElasticFusion

6.5. Kintinuous

ElasticFusion 同一个团队的工作,帝国理工 Stefan Leutenegger

论文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetricfusion[J]. The International Journal of Robotics Research, 2015,34(4-5): 598-626.

代码:https://github.com/mp3guy/Kintinuous

6.6. ElasticReconstruction

论文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2015:5556-5565.

代码:https://github.com/qianyizh/ElasticReconstruction

6.7. FlashFusion

论文:Han L, Fang L. FlashFusion:Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.

代码(一直没放出来):https://github.com/lhanaf/FlashFusion

6.8. RTAB-Map(激光视觉稠密重建)

论文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneouslocalization and mapping library for large‐scale and long‐term online operation[J]. Journal ofField Robotics, 2019, 36(2): 416-446.

代码:https://github.com/introlab/rtabmap

6.9. RobustPCLReconstruction(户外稠密重建)

论文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-ScaleOutdoor Scenes[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. 2019: 9690-9698.

代码:https://github.com/ziquan111/RobustPCLReconstruction

6.10. plane-opt-rgbd(室内平面重建)

论文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texturefor Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition Workshops. 2019: 49-53.

代码:https://github.com/chaowang15/plane-opt-rgbd

6.11. DenseSurfelMapping(稠密表面重建)

论文:Wang K, Gao F, Shen S. Real-timescalable dense surfel mapping[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 6919-6925.

代码:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

6.12. surfelmeshing(网格重建)

论文:Schöps T, Sattler T, Pollefeys M. Surfelmeshing:Online surfel-based mesh reconstruction[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2019.

代码:https://github.com/puzzlepaint/surfelmeshing

6.13. DPPTAM(单目稠密重建)

论文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from amonocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015(ART-2015-92153).

代码:https://github.com/alejocb/dpptam

相关研究:基于超像素的单目 SLAM:UsingSuperpixels in Monocular SLAM ICRA 2014 ;谷歌学术

6.14. VI-MEAN(单目视惯稠密重建)

论文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots usingvisual-inertial fusion[C]//2017 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2017: 4552-4559.

代码:https://github.com/dvorak0/VI-MEAN

6.15. REMODE(单目概率稠密重建)

论文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction inreal time[C]//2014 IEEE International Conference on Robotics andAutomation (ICRA). IEEE, 2014: 2609-2616.

原始开源代码:https://github.com/uzh-rpg/rpg_open_remode

与 ORB-SLAM2 结合版本:https://github.com/ayushgaud/ORB_SLAM2https://github.com/ayushgaud/ORB_SLAM2

6.16. DeepFactors(实时的概率单目稠密 SLAM)

帝国理工学院戴森机器人实验室

论文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors:Real-Time Probabilistic Dense Monocular SLAM[J]. arXivpreprint arXiv:2001.05049, 2020.

代码:https://github.com/jczarnowski/DeepFactors(还未放出)

其他论文:Bloesch M,Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representationfor dense visual SLAM[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2018: 2560-2568.

6.17. probabilistic_mapping(单目概率稠密重建)

港科沈邵劼老师团队

论文:Ling Y, Wang K, Shen S. Probabilisticdense reconstruction from a moving camera[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 6364-6371.

代码:https://github.com/ygling2008/probabilistic_mapping

另外一篇稠密重建文章的代码一直没放出来Github:Ling Y, Shen S. Real‐timedense mapping for online processing and navigation[J]. Journal ofField Robotics, 2019, 36(5): 1004-1036.

6.18. ORB-SLAM2 单目半稠密建图

论文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

代码(本身没有开源,贺博复现的一个版本):https://github.com/HeYijia/ORB_SLAM2

加上线段之后的半稠密建图

论文:He S, Qin X, Zhang Z, et al. Incremental3d line segment extraction from semi-dense slam[C]//2018 24thInternational Conference on Pattern Recognition (ICPR). IEEE, 2018:1658-1663.

代码:https://github.com/shidahe/semidense-lines

作者在此基础上用于指导远程抓取操作的一项工作:https://github.com/atlas-jj/ORB-SLAM-free-space-carving

7. Optimization

个人感觉优化可能是 SLAM 中最难的一部分了吧 +_+ ,我们一般都是直接用现成的因子图、图优化方案,要创新可不容易,分享山川小哥d的入坑指南因子图优化 SLAM 研究方向归纳 - 知乎。

7.1. 后端优化库

GTSAM:https://github.com/borglab/gtsam

g2o:https://github.com/RainerKuemmerle/g2o

ceres:http://ceres-solver.org/

7.2. ICE-BA

论文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundleadjustment for visual-inertial slam[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition. 2018: 1974-1982.

代码:https://github.com/baidu/ICE-BA

7.3. minisam(因子图最小二乘优化框架)

论文:Dong J, Lv Z. miniSAM: AFlexible Factor Graph Non-linear Least Squares Optimization Framework[J]. arXivpreprint arXiv:1909.00903, 2019.

代码:https://github.com/dongjing3309/minisam

7.4. SA-SHAGO(几何基元图优化)

论文:Aloise I, Della Corte B, Nardi F, et al. Systematic Handling of Heterogeneous Geometric Primitivesin Graph-SLAM Optimization[J]. IEEE Robotics and AutomationLetters, 2019, 4(3): 2738-2745.

代码:https://srrg.gitlab.io/sashago-website/index.html#

7.5. MH-iSAM2(SLAM 优化器)

论文:Hsiao M, Kaess M. MH-iSAM2:Multi-hypothesis iSAM using Bayes Tree and Hypo-tree[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:1274-1280.

代码:https://bitbucket.org/rpl_cmu/mh-isam2_lib/src/master/

7.6. MOLA(用于定位和建图的模块化优化框架)

论文:Blanco-Claraco J L. A ModularOptimization Framework for Localization and Mapping[J]. Proc. ofRobotics: Science and Systems (RSS), FreiburgimBreisgau, Germany, 2019,2.

代码:https://github.com/MOLAorg/mola

往期干货资源:

汇总 | 国内最全的3D视觉学习资源,涉及计算机视觉、SLAM、三维重建、点云处理、姿态估计、深度估计、3D检测、自动驾驶、深度学习(3D+2D)、图像处理、立体视觉、结构光等方向!

汇总 | 3D目标检测(基于点云、双目、单目)

汇总 | 6D姿态估计算法(基于点云、单目、投票方式)

汇总 | 三维重建算法实战(单目重建、立体视觉、多视图几何)

汇总 | 3D点云后处理算法(匹配、检索、滤波、识别)

汇总 | SLAM算法(视觉里程计、后端优化、回环检测)

汇总 | 深度学习&自动驾驶前沿算法研究(检测、分割、多传感器融合)

汇总 | 相机标定算法

汇总 | 事件相机原理

汇总 | 结构光经典算法

汇总 | 缺陷检测常用算法与实战技巧

你可能感兴趣的:(SLAM,自动驾驶)