【开卷数据结构 】稀疏矩阵

目录

稀疏矩阵

矩阵与稀疏矩阵的定义

稀疏矩阵的转置

详细思路

思路一

思路二

稀疏矩阵的乘法

详细思路

94536690f848438fab30aa17191a6ea2.png

稀疏矩阵

矩阵与稀疏矩阵的定义


Q:什么是矩阵

A:数学上,一个矩阵由 m 行 n 列的元素组成,是一个 m 行,n 列的表,m 和 n 是矩阵的维度。一般地,写作 mxn(读作“m乘n”)来指明一个 m 行 n 列矩阵。矩阵的元素个数总计为 mn 个。如果 m 等于 n ,矩阵为方阵

【开卷数据结构 】稀疏矩阵_第1张图片

一般情况下,矩阵的标准存储方式是一个二维数组 a[MAX_ROWS][MAX_COLS] 。利用这种存储方式,可以通过 a[i][j] ,通过行下标,列下标快速找到任意元素的存储位置。


Q:什么是稀疏矩阵

A:一个矩阵的绝大部分都为零元素,我们把这种矩阵称为稀疏矩阵。

【开卷数据结构 】稀疏矩阵_第2张图片

 

如图:矩阵中只有 2/15 是非零元素,这就是一个标准的稀疏矩阵


Q:二维数组储存矩阵的缺点

A:如果一个矩阵中包含很多零元素(是稀疏矩阵),就会浪费大量的存储空间。因此,稀疏矩阵的存储表示只需存储非零元素。


Q:稀疏矩阵的存储方式

A:通过对矩阵的分析,我们发现使用三元组 能够唯一的刻画矩阵的任意一个元素。这意味者可以使用三元数组来存储表示稀疏矩阵。

代码演示

#define MAX_TERMS 101	//定义最大长度 
typedef struct{
	int col;
	int row;
	int xalue;
}term;
term a[MAX_TERMS];

我们可以用 a[0].row 表示行的数目,用 a[0].col 表示列的数目,用 a[0].value 表示非零元素的总数。其他位置 row 域存放行下标, col 域存放列下标,value 域存放元素值。三元组按照行的顺序排序,并且在同一行内按照列的顺序排序。

稀疏矩阵存储为三元组
a[0] 5 6 4
a[1] 0 0 15
a[2] 1 1 11
a[3] 2 3 6
a[4] 4 0 9

94536690f848438fab30aa17191a6ea2.png

稀疏矩阵的转置

详细思路

为了转置一个矩阵,必须交换它的行和列。也就是说,原矩阵的任意元素 a[i][j] 应该成为其转置矩阵的元素 b[j][i]


思路一

依次循环每一列,找到每一列的所有元素并把他们储存在转置矩阵的对应的行上。

//伪代码
for 对于 j 列的所有元素
    把元素放置在元素

代码演示

void transpose(term a[],term b[])
//b是a的转置 
{
	int n,i,j,currentb;
	n=a[0].value;			//元素总数 
	b[0].row=a[0].col;		//b的行数=a的列数
	b[0].co 1=a[0].row;	    //b的列数=a的行数
	b[0].value =n;
	if(n> 0) 
	{// 非零矩阵 
		currentb=1;
		for(i=0;i

思路二

首先确定原矩阵中每一列的元素个数,这也就是其转置矩阵中每一行的元素个数。于是就可以得到转置矩阵每行的起始位置,从而,可以将原矩阵的元素依次移到其转置矩阵中的恰当位置

代码演示

void fast transpose(term a[], term b[])
{
//将a的转置矩阵存放于b中 
	int row terms[MAX_COL], starting pos[MAX_COL]; 
	int i,j, num_cols=a[0].col, num_terms=a[0].value;
	b[0].row=num_cols;b[0].col=a[0].row;
	b[0].value=num_terms;
	if(num_terms>0){//非零矩阵
		for(i=0;i

94536690f848438fab30aa17191a6ea2.png

稀疏矩阵的乘法

Q:什么是矩阵乘法

A:设A为 mxp 的矩阵,B为 pxn 的矩阵,那么称 mxn 的矩阵D为矩阵A与B的乘积,记作D=AB,其中矩阵D中的第 i 行第 j 列元素可以表示为:

注意:两个稀疏矩阵的乘积可能不再是稀疏矩阵


详细思路


我们可以按照行的顺序计算D的元素,把元素存放到正确的位置,这样就不用移动已计算出的元素的位置。一般情况下,必须遍历整个B才能得到第 j 列的所有元素。但是,我们可以先计算 B 的转置,使列元素顺序相续排序,可以避免重复多次遍历整个 B 。

对于找出的 A 的第 i 行和 B 的第 j 列的所有元素,做合并操作就能实现矩阵乘法。

代码演示

void storesum(term a[],int *totald,int row,int column,int *sum)
{//如果 *sum!=0,它的行和列存储位置为 d 中的 *totald+1
	if(*sum)
		if(*tptald

你可能感兴趣的:(【开卷数据结构】,数据结构,算法,矩阵,c++,c语言)