- Python 适合大型软件项目(不是基于 Web 的)吗?
潮易
python开发语言
Python适合大型软件项目(不是基于Web的)吗?Python非常适合于大型软件项目的开发,尤其是那些不依赖于Web技术的项目。以下是一些关于如何在Python中开发大型软件项目的建议:1.设计明确的架构:在编写代码之前,你需要明确你的软件系统的架构。你应该考虑模块化的设计,以便更容易地扩展和维护。2.使用合适的数据结构和算法:根据你的需求,选择合适的数据结构或算法可以提高你的程序的性能。3.测
- 【AI论文】OmniHuman-1: 重新思考一阶段条件式人体动画模型的扩展升级
东临碣石82
人工智能
摘要:端到端的人体动画技术,如音频驱动的说话人物生成,近年来取得了显著的进步。然而,现有方法在大规模通用视频生成模型方面的扩展仍然存在困难,限制了它们在实际应用中的潜力。在本文中,我们提出了OmniHuman,一个基于扩散变换器的框架,该框架通过将运动相关条件融入训练阶段来扩展数据规模。为此,我们为这些混合条件引入了两种训练原则,以及相应的模型架构和推理策略。这些设计使OmniHuman能够充分利
- 【AI论文】使用大型推理模型进行竞技编程
东临碣石82
人工智能
摘要:我们的研究表明,将强化学习应用于大型语言模型(LLMs)能显著提升复杂编码和推理任务的性能。此外,我们将两个通用推理模型——OpenAI的o1模型和o3模型的一个早期检查点——与一个特定领域的系统o1-ioi进行了比较。o1-ioi采用了为参加2024年国际信息学奥林匹克竞赛(IOI)而手工设计的推理策略。我们使用o1-ioi实时参加了2024年IOI竞赛,并凭借手工制定的测试时策略取得了第
- 前瞻技术:改变未来的关键趋势与应用
jiemidashi
经验分享
物联网IoT)在智能家居中的应用越来越广泛。智能家居通过互联网连接各种设备,使日常生活更加便捷。例如,智能灯泡可以通过手机控制。用户可以在外出时远程关灯,节约电量。这种智能化控制不仅提高了家居安全性,还提升了用户的生活质量。实现智能家居设备的控制需要几个步骤。首先,用户需要下载相关的智能家居应用。其次,设备如智能插座、安防摄像头等,需连接到同一网络。通过应用,用户可以轻松管理这些设备。比如,设定定
- 国产化板卡设计原理图:2288-基于FMC接口的JFM7K325T PCIeX4 3U VPX接口卡
hexiaoyan827
3UVPXFMC子卡JFM7K325T板卡软件无线电处理平台数据采集IO卡
基于FMC接口的JFM7K325TPCIeX43UVPX接口卡一、板卡概述标准VPX3U板卡,基于JFM7K325T芯片,pin_to_pin兼容FPGAXC7K410T-2FFG900,支持PCIeX8、64bitDDR3容量2GByte,HPC的FMC连接器,板卡支持各种接口输入,软件支持windows,Linux驱动。可应用于高性能计算,频域算法,如与FFT的加速等;配合AD,DAFMC子卡
- 如何微调(Fine-tuning)大语言模型?看完这篇你就懂了!!
datian1234
语言模型人工智能chatgptLLMaiAI大模型大模型微调
前言本文介绍了微调的基本概念,以及如何对语言模型进行微调。从GPT3到ChatGPT、从GPT4到GitHubcopilot的过程,微调在其中扮演了重要角色。什么是微调(fine-tuning)?微调能解决什么问题?什么是LoRA?如何进行微调?本文将解答以上问题,并通过代码实例展示如何使用LoRA进行微调。微调的技术门槛并不高,如果微调的模型规模不大10B及10B以下所需硬件成本也不高(10B模
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- 372_C++_当有多个通道,开启不同告警的同一种的开关时,限制该开关的打开数量(比如视频上传开关)
扳手的海角
物联网c++
GetCloudUploadNum函数GetCloudUploadNum函数主要用于统计和控制云端视频上传的通道数量,其主要功能如下:功能目的//检查每个通道的云端视频上传配置,并统计启用云端上传的通道总数intCloudUploadNum=0;boolInValidCloudUploadChn[MAX_CHN_NUMPARA]={};
- 【AI系列】从零开始学习大模型GPT (2)- Build a Large Language Model (From Scratch)
Tasfa
AI人工智能教程人工智能学习gpt
前序文章【AI系列】从零开始学习大模型GPT(1)-BuildaLargeLanguageModel(FromScratch)BuildaLargeLanguageModel背景第1章:理解大型语言模型第2章:处理文本数据第3章:编码Attention机制什么是Attention机制?Attention机制的基本原理数学表示应用总结为什么要使用注意力机制如何实现?简单注意力机制带训练权重的注意力机
- 自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
岁月的眸
人工智能
如果你的预算是3万元人民币,希望训练和微调7B参数规模的人工智能大模型(如LLaMA、Mistral等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置:1.关键硬件配置(1)GPU(显卡)推荐显卡:NVIDIARTX4090(24GBVRAM)或者RTX3090(24GBVRAM)理由:7B模型推理:24GB显存足够跑7B模型的推理,但全参数训练可能吃力,适合LoRA等微调
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 【好书推荐2】AI提示工程实战:从零开始利用提示工程学习应用大语言模型
是Yu欸
粉丝福利人工智能深度学习bertAIGCpromptgptAI写作
【好书推荐2】AI提示工程实战:从零开始利用提示工程学习应用大语言模型写在最前面AI辅助研发方向一:AI辅助研发的技术进展方向二:行业应用案例方向三:面临的挑战与机遇方向四:未来趋势预测方向五:与法规的影响方向六:人才培养与教育《AI提示工程实战:从零开始利用提示工程学习应用大语言模型》关键点内容简介作者简介你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- MVC和react
吃蛋糕的居居
javascriptcssnode.jshtml
MVC1.MVC是一种使用MVC(ModelViewController模型-视图-控制器)设计创建Web应用程序的模式.(1)Model(模型)表示应用程序核心(比如数据库记录列表).(2)View(视图)显示数据(数据库记录).(3)Controller(控制器)处理输入(写入数据库记录).2.MVC模式同时提供了对HTML、CSS和JavaScript的完全控制.(1)Model(模式)是应
- 手把手教你给 windows装个vmware虚拟机
python算法小白
附Java/C/C++/机器学习/算法与数据结构/前端/安卓/Python/程序员必读书籍书单大全:书单导航页(点击右侧极客侠栈即可打开个人博客):极客侠栈①【Java】学习之路吐血整理技术书从入门到进阶最全50+本(珍藏版)②【算法数据结构+acm】从入门到进阶吐血整理书单50+本(珍藏版)③【数据库】从入门到进阶必读18本技术书籍网盘吐血整理网盘(珍藏版)④【Web前端】从HTML到JS到AJ
- RESTful API 和 WebSocket 的区别
戎梓漩
计算机restfulwebsocket后端
文章目录1.RESTfulAPI特点使用场景示例2.WebSocket特点使用场景示例3.RESTfulAPI和WebSocket对比总结4.哪种方式适合大模型服务?RESTfulAPIWebSocket5.什么时候用REST?什么时候用WebSocket?6.结论RESTfulAPI和WebSocket是两种不同的通信方式,主要区别在于数据交互方式、连接管理、性能和适用场景。1.RESTfulA
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 分布式数据库面试整理
Necther
数据库面试分布式
5.3.1redis面试专题1、redis和memcached什么区别?为什么高并发下有时单线程的redis比多线程的memcached效率要高?区别:mc可缓存图片和视频。rd支持除k/v更多的数据结构;rd可以使用虚拟内存,rd可持久化和aof灾难恢复,rd通过主从支持数据备份;3.rd可以做消息队列。原因:mc多线程模型引入了缓存一致性和锁,加锁带来了性能损耗。2、redis主从复制如何实现
- 一、C语言编程LeetCode数据结构题
失败才是人生常态
考研初试准备c语言数据结构
一、链表1、两数相加算法思想:1、设置两个指针p,q,分别指向两个链表的头结点2、设置一个临时变量temp,用来记录两个数相加时是否有进位,初始化为0。只要p,q指针不指向空,就循环把两个指针所指向节点的值和temp相加。如果大于9,就让一个临时变量设置为1,并把相加结果减10,把结果赋给两个指针所指向节点的值;如果小于9就直接赋值给两个节点所指向的值。然后p,q指针分别后移一个节点。3、最后,判
- 解决Vue控制台报错:WebSocketClient.js:13 WebSocket connection to ‘ws://192.168.x.x:8080/ws‘ failed:
藏蓝色攻城狮
vuejavascriptvue.jswebsocket
1、报错情况在调试项目过程中,无意中发现,在控制台内,报了这样的错误:WebSocketClient.js:13WebSocketconnectionto‘ws://192.168.x.x:8080/ws’2、错误原因查了一些资料,原因是,原因就是开发环境与生产环境的区别3、解决方案:3.1第一种如果没使用过webscoket,禁用之后就可以了,就不会出现这个问题了。在vue.config.js中
- IPv4与IPv6有什么优缺点?
菠萝派爱跨境
网络服务器运维
IP是指互联网协议,是传输控制协议/互联网协议套件(TCP/IP)的主要部分。TCP/IP是一套标准和规则,用于规范不同网络上的设备之间打包数据(数据报)的传输和交换。互联网协议管理跨网络边界的数据包寻址、打包/解包和路由效率。要参与数据交换,每个内联网或互联网设备都需要一个唯一的“IP地址”——就像我们用个人“姓名和地址”组合来接收邮寄信件一样。这也涉及住宅或数据中心代理。IP地址包含在每个数据
- 通义灵码全新上线模型选择功能,新增支持 DeepSeek-V3 和 DeepSeek-R1 模型
TONGYI_Lingma
阿里云云原生AI程序员通义灵码
近期,阿里云百炼平台重磅推出DeepSeek-V3、DeepSeek-R1、DeepSeek-R1-Distill-Qwen-32B等6款模型,进一步丰富其AI模型矩阵。与此同时,通义灵码也紧跟步伐,全新上线模型选择功能,支持基于百炼的DeepSeek-V3和DeepSeek-R1满血版671B模型,为AI编程领域注入新活力。通义灵码能力再升级,支持推理模型选择今年1月,通义灵码AI程序员全面上线
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第一章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第一章:认识StableDiffusion与Prompt设计基础1.1什么是StableDiffusion:生成原理与核心优势一、颠覆性生成逻辑:从噪声到艺术的魔法逆向降噪原理传统AI绘画:直接生成完整像素StableDiffusion:通过潜扩散模型(LDM),在低维潜空间(LatentSpace)逐步去除噪声,最终解码为高清图像类比解释:如同雕塑家从混沌的大理石中凿出形体,AI在噪声中「雕刻」
- 【算法】动态规划专题⑪ —— 区间DP python
查理零世
动态规划专题算法动态规划python
目录引入进入正题回归经典总结引入区间动态规划(区间DP)适用于解决涉及区间最优化的经典问题,如石子合并、最长回文子序列等。进入正题石子合并https://www.acwing.com/problem/content/284/有N堆石子排成一排,其编号为1,2,3,…,N。每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量
- 解码DeepSeek家族系列:大语言模型赛道上的黑马传奇
大F的智能小课
语言模型人工智能自然语言处理
1.DeepSeek公司概况1.1成立背景与发展历程DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,于2023年7月17日正式成立。公司由知名量化资管巨头幻方量化孕育而生,其创始人梁文峰是幻方量化的联合创始人之一。DeepSeek自成立之初,便专注于开发先进的大语言模型(LLM)及相关技术,致力于通过数据蒸馏技术提取更精炼、有用的数据,以提升模型性能。在发展历程中,DeepSeek
- 国内靠谱的docker镜像源
zwjapple
docker容器运维
阿里云镜像源特点:阿里云提供的镜像加速服务,为每个用户分配专属的镜像源地址,稳定性高、速度快,能有效提升拉取镜像的效率。它依托阿里云强大的基础设施,覆盖全国多个地域的数据中心,能根据用户的地理位置智能分配节点,实现快速响应。获取方式:登录阿里云容器镜像服务控制台,在“镜像加速器”板块查看专属地址,格式类似https://xxxxxx.mirror.aliyuncs.com。华为云镜像源特点:华为云
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- Sora如何颠覆20个商业场景?Sora模型的商业应用及成本效益分析
大F的智能小课
玩转大模型人工智能
Sora模型简介Sora模型,作为一种先进的长视频生成模型,具有广泛的应用潜力。以下是Sora模型可能的20个商业场景应用,包括每个场景在Sora模型未发布时的普遍做法、Sora模型发布之后的改变以及节省成本的维度分析。节省成本的说明节省成本的说明:节省成本的计算是基于几个关键因素,包括时间、人力、设备和材料成本。以下是具体计算方法的一个概述:时间成本:使用Sora模型可以显著减少视频制作的时间。
- Java微服务技术栈(2)
Z-H-J
Java笔记随录java微服务开发语言
写在前面高级篇里的很多知识我都没有去实践过,只是知道相关的原理,主要原因是:应用场景在多数情况下难以碰见(高并发)对于运行的要求过高(如果是单节点进行模拟,那么就必须有很大的运行内存)所以这部分记录更多是一个思路的梳理,可能无法作为各位全面掌握该部分知识的条目,望见谅7.微服务的保护技术:Sentinelsentiel分为sentinel控制台和sentinel客户端,具体的规则过滤都由配置在微服
- GD32 ADC 工作模式及应用详解
jiuri_1215
MCU开发单片机嵌入式硬件
一、引言在嵌入式系统开发中,模拟数字转换器(ADC)是一个至关重要的组件。它能够将模拟信号转换为数字信号,从而让微控制器能够处理来自各种传感器的模拟数据。GD32系列微控制器提供了丰富的ADC功能和多种工作模式,以满足不同应用场景的需求。本文将详细介绍GD32ADC的常见工作模式,包括单次转换、连续转换、扫描模式、注入通道、外部触发、DMA传输等,给出具体的应用场景和代码示例,并探讨不同模式之间的
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分