POJ 2186 Popular Cows

 

大意:牛牛之间互相喜欢,而且这种喜欢具有传递性,要求你求出最受欢迎的牛牛们的个数(A single integer that is the number of cows who are considered popular by every other cow. 

思路:通过“缩点”之后,然后求强连通分量出度的个数,如果为一,那么求出这个“缩点”里所有牛牛的个数。如果大于一,没有符合条件的,手推一遍即可证实。

CODE:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using  namespace std;

#define MAXN 10010
#define MAXM 100010 

struct Edge
{
     int v, w, next;
}edge[MAXM];

int first[MAXN], stack[MAXN], ins[MAXN], dfn[MAXN], low[MAXN];
int belong[MAXM];
int outd[MAXN];

int n, m;
int cnt;
int scnt, top, tot;

void init()
{
    cnt =  0;
    scnt = top = tot =  0;
    memset(first, - 1sizeof(first));
    memset(dfn,  0sizeof(dfn));
}

void read_graph( int u,  int v)
{
    edge[cnt].v = v;
    edge[cnt].next = first[u];
    first[u] = cnt++;
}

void dfs( int u)
{
     int t;
    low[u] = dfn[u] = ++tot;
    ins[u] =  1;
    stack[top++] = u;
     for( int e = first[u]; e != - 1; e = edge[e].next)
    {
         int v = edge[e].v;
         if(!dfn[v])
        {
            dfs(v);
            low[u] = min(low[u], low[v]);
        }
         else  if(ins[v])
        {
            low[u] = min(low[u], dfn[v]);
        }
    }
     if(low[u] == dfn[u])
    {
        ++scnt;
         do
        {
            t = stack[--top];
            belong[t] = scnt;
            ins[t] =  0;
        } while(t != u);
    }
}

void Tarjan()
{
     for( int v =  1; v <= n; v++)  if(!dfn[v])
        dfs(v);
}

void solve()
{
    Tarjan();  // Tarjan();
    memset(outd,  0sizeof(outd));
     for( int u =  1; u <= n; u++)
    {
         for( int e = first[u]; e != - 1; e = edge[e].next)
        {
             int v = edge[e].v;
             if(belong[u] != belong[v])    outd[belong[u]]++;  // 强连通分量的出度增加,即缩点的出度增加。
        }
    }
     int index =  0, flag =  0;
     for( int i =  1; i <= scnt; i++)  if(!outd[i])  // 如果强连通的出度为0
    {
        index++;
        flag = i;  // 标记所在强连通
    }
     if(index >  1) printf( " 0\n ");  // 出度为0的强连通不只一个 
     else
    {
        index =  0;
         for( int i =  1; i <= n; i++)  if(belong[i] == flag) index++;  // 所有的顶点属于出度为0的强连通分量点的数目 
        printf( " %d\n ", index);
    }
}

int main()
{
     while(~scanf( " %d%d ", &n, &m))
    {
        init();
         while(m--)
        {
             int u, v;
            scanf( " %d%d ", &u, &v);
            read_graph(u, v);
        }
        solve();
    }
     return  0;
}

 

 

你可能感兴趣的:(poj)