表定义的自增值达到上限后的逻辑是:再申请下一个 id 时,得到的值保持不变。
create table t(id int unsigned auto_increment primary key) auto_increment=4294967295;
insert into t values(null);
//成功插入一行 4294967295
show create table t;
/* CREATE TABLE `t` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4294967295;
*/
insert into t values(null);
//Duplicate entry '4294967295' for key 'PRIMARY'
2^32-1(4294967295)不是一个特别大的数,对于一个频繁插入删除数据的表来说,是可能会被用完的。因此,在建表的时候需要考察该表是否有可能达到这个上限,如果有可能,就应该创建成 8 个字节的 bigint unsigned。
如果创建的 InnoDB 表没有指定主键,那么 InnoDB 会创建一个不可见的,长度为 6 个字节的 row_id。InnoDB 维护了一个全局的 dict_sys.row_id 值,所有无主键的 InnoDB 表,每插入一行数据,都将当前的 dict_sys.row_id 值作为要插入数据的 row_id,然后把 dict_sys.row_id 的值加 1。
在代码实现时 row_id 是一个长度为 8 字节的无符号长整型 (bigint unsigned)。但是,InnoDB 在设计时,给 row_id 留的只是 6 个字节的长度,这样写到数据表中时只放了最后 6 个字节,所以 row_id 能写到数据表中的值,就有两个特征:
写入表的 row_id 是从 0 开始到 2^48-1。达到上限后,下一个值就是 0,然后继续循环。
在 InnoDB 逻辑里,申请到 row_id=N 后,就将这行数据写入表中;如果表中已经存在 row_id=N 的行,新写入的行就会覆盖原有的行。
要验证这两个结论,可以通过 gdb 修改系统的自增 row_id 来实现。
用 gdb 将 dict_sys.row_id 设置为 2^48之后,再插入的 a=2 的行会出现在表 t 的第一行,因为这个值的 row_id=0。之后再插入的 a=3 的行,由于 row_id=1,就覆盖了之前 a=1 的行,因为 a=1 这一行的 row_id 也是 1。
覆盖数据,就意味着数据丢失,影响的是数据可靠性;报主键冲突,是插入失败,影响的是可用性。而一般情况下,可靠性优先于可用性。
从这个角度看,还是应该在 InnoDB 表中主动创建自增主键。因为,表自增 id 到达上限后,再插入数据时报主键冲突错误,比较能被接受。
MySQL 内部维护了一个全局变量 global_query_id,每次执行语句的时候将它赋值给 Query_id,然后给这个变量加 1。如果当前语句是这个事务执行的第一条语句,那么 MySQL 还会同时把 Query_id 赋值给这个事务的 Xid。
global_query_id 是一个纯内存变量,重启之后就清零了。 所以,在同一个数据库实例中,不同事务的 Xid 也是有可能相同的。但是 MySQL 重启之后会重新生成新的 binlog 文件,这就保证了,同一个 binlog 文件里,Xid 一定是惟一的。
虽然 MySQL 重启不会导致同一个 binlog 里面出现两个相同的 Xid,但是如果 global_query_id 达到上限后,就会继续从 0 开始计数。从理论上讲,还是就会出现同一个 binlog 里面出现相同 Xid 的场景。
Xid 是由 server 层维护的。 InnoDB 内部使用 Xid,就是为了能够在 InnoDB 事务和 server 之间做关联。但是,InnoDB 自己的 trx_id,是另外维护的。(关于 trx_id,可参考 08 | 事务到底是隔离的还是不隔离的?)
InnoDB 内部维护了一个 max_trx_id 全局变量,每次需要申请一个新的 trx_id 时,就获得 max_trx_id 的当前值,然后并将 max_trx_id 加 1。
InnoDB 数据可见性的核心思想是:每一行数据都记录了更新它的 trx_id,当一个事务读到一行数据的时候,判断这个数据是否可见的方法,就是通过事务的一致性视图与这行数据的 trx_id 做对比。
对于正在执行的事务,可以从 information_schema.innodb_trx 表中看到事务的 trx_id。
关于事务 trx_id 的 示例:
T2 时刻显示的 trx_id 是一个很大的数;T4 时刻显示的 trx_id 是 1289,看上去是一个比较正常的数字。
在 T1 时刻,session A 还没有涉及到更新,是一个只读事务。而对于只读事务,InnoDB 并不会分配 trx_id。也就是说:
疑问:为什么 trx_id 每次申请不止加 1?
疑问:T2 时刻查到的这个很大的数字是怎么来的?
这个数字是每次查询的时候由系统临时计算出来的。它的算法是:把当前事务的 trx 变量的指针地址转成整数,再加上 2^48。使用这个算法,就可以保证以下两点:
疑问:为什么还要再加上 2^48?
在显示值里面加上 2^48,目的是要保证只读事务显示的 trx_id 值比较大,正常情况下就会区别于读写事务的 id。但是,trx_id 跟 row_id 的逻辑类似,定义长度也是 8 个字节。因此,在理论上还是可能出现一个读写事务与一个只读事务显示的 trx_id 相同的情况。不过这个概率很低,并且也没有什么实质危害。
疑问:只读事务不分配 trx_id,有什么好处?
max_trx_id 会持久化存储,重启也不会重置为 0。 从理论上讲,只要一个 MySQL 服务跑得足够久,就可能出现 max_trx_id 达到 2^48-1 的上限,然后从 0 开始的情况。当达到这个状态后,MySQL 就会持续出现一个脏读的 bug。
在 T2 时刻,session B 执行第一条 update 语句的事务 id 就是 2^48-1,而第二条 update 语句的事务 id 就是 0 了,这条 update 语句执行后生成的数据版本上的 trx_id 就是 0。
在 T3 时刻,session A 执行 select 语句的时候,判断可见性发现,c=3 这个数据版本的 trx_id,小于事务 TA 的低水位,因此认为这个数据可见。
由于低水位值会持续增加,而事务 id 从 0 开始计数,就导致了系统在这个时刻之后,所有的查询都会出现脏读的。并且,MySQL 重启时 max_trx_id 也不会清 0,也就是说重启 MySQL,这个 bug 仍然存在。
系统保存了一个全局变量 thread_id_counter,每新建一个连接,就将 thread_id_counter 赋值给这个新连接的 thread_id。
thread_id_counter 定义的大小是 4 个字节,因此达到 2^32-1 后,它就会重置为 0,然后继续增加。但是,不会在 show processlist 里看到两个相同的 thread_id。因为 MySQL 设计了一个唯一数组的逻辑,给新线程分配 thread_id 的时候,逻辑代码如下:
do {
new_id= thread_id_counter++;
} while (!thread_ids.insert_unique(new_id).second);