分布式机器学习:PageRank算法的并行化实现(PySpark)

目前对图算法进行并行化的主要思想是将大图切分为多个子图,然后将这些子图分布到不同的机器上进行并行计算,在必要时进行跨机器通信同步计算得出结果。学术界和工业界提出了多种将大图切分为子图的划分方法,主要包括两种,边划分(Edge Cut)和点划分(Vertex Cut)。总而言之,边划分将节点分布到不同机器中(可能划分不平衡),而点划分将边分布到不同机器中(划分较为平衡)。接下来我们使用的算法为边划分。我们下面的算法是简化版,没有处理悬挂节点的问题。

你可能感兴趣的:(分布式机器学习:PageRank算法的并行化实现(PySpark))