- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- Pytorch学习 day06(torchvision中的datasets、dataloader)
丿罗小黑
Pytorchpytorch学习人工智能
torchvision的datasets使用torchvision提供的数据集API,比较方便,如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)用来告诉程序,数据集存储的位置,共有多少样本等代码如下:importtorchvision#导入torchvision库#使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、
- Pytorch学习torch.clamp ()用法浅析
Midsummer-逐梦
#torchpytorch学习人工智能
首先给出官方对此函数的定义网页:torch.clamp—PyTorch2.1documentation一、官方定义torch.clamp(input,min=None,max=None,*,out=None)→Tensor其中:input:输入张量,即需要进行元素限制的张量。min:张量中的元素的最小值。如果元素小于这个值,将被替换为这个最小值。max:张量中的元素的最大值。如果元素大于这个值,将
- PyTorch学习笔记 - 损失函数
__星辰大海__
PyTorchpytorch
文章目录1.内置损失函数2.继承nn.Module自定义损失函数3.继承autograd.Function自定义损失函数3.三种不同方式实现MSE实验PyTorch除了内置损失函数,还可以自定义损失函数。我们以均方误差为例来讲解PyTorch中损失函数的使用方法。均方误差(MeanSquaredError,MSE)是预测值x=(x1,x2,...,xn)x=(x_1,x_2,...,x_n)x=(
- 【Pytorch学习笔记】模型模块05——Module常用函数
越轨
Pytorch学习笔记pytorch学习笔记人工智能python
Module常用函数设置训练和评估模式**作用:**在PyTorch中,模型有训练(training)和评估(evaluation)两种模式,它们会影响某些层的行为。主要影响的层:Dropout层:训练时随机丢弃神经元,评估时保持全部神经元BatchNorm层:训练时计算并更新统计量,评估时使用固定统计量LayerNorm层:行为在两种模式下基本一致2.设置方法#设置训练模式model.train
- 【Pytorch学习笔记】模型模块06——hook函数
越轨
Pytorch学习笔记深度学习pytorch人工智能学习笔记python机器学习
hook函数什么是hook函数hook函数相当于插件,可以实现一些额外的功能,而又不改变主体代码。就像是把额外的功能挂在主体代码上,所有叫hook(钩子)。下面介绍Pytorch中的几种主要hook函数。torch.Tensor.register_hooktorch.Tensor.register_hook()是一个用于注册梯度钩子函数的方法。它主要用于获取和修改张量在反向传播过程中的梯度。语法格
- PyTorch学习之:torch.gather是什么?
杰瑞学AI
AI/AGINLP/LLMsComputerknowledgepytorch学习人工智能python
torch.gather的定义:torch.gather是PyTorch中的一个张量操作函数,其作用是根据指定的维度(dim)和索引张量(index),从输入张量(input)中收集元素,生成一个与索引张量形状相同的输出张量。总体来说,就是维度dim和索引张量index决定一个收集数的规则,然后,基于这个规则从输入张量中获取需要的元素。核心部分:1.输入张量(input):任意形状的张量。2.索引
- 小土堆pytorch学习笔记 之神经网络基本骨架
李小鱼爱喝水
pytorchpytorch学习笔记
pytorch之神经网络基本骨架[!TIP]首先来补补一些图像处理的基础知识吧!(尊嘟是0基础了)关于图片格式高度(Height):图像的垂直尺寸,即图像从上到下的像素数量。宽度(Width):图像的水平尺寸,即图像从左到右的像素数量。通道(Channels):图像的颜色信息,最常见的是RGB(红、绿、蓝)三通道。每个通道代表图像在特定颜色维度上的强度。批量处理:深度学习模型通常一次处理多个图像,
- 【Pytorch学习笔记】数据模块05——编写自己的Dataset
越轨
Pytorch学习笔记pytorch学习笔记人工智能
编写自己的Dataset通过前面的知识,大家基本了解如何整个数据模块是如何构建的,下面举个完整的例子,要编写自定义的Dataset类,需要遵循以下基本步骤:1.基本结构自定义Dataset类需要继承torch.utils.data.Dataset,并实现以下三个必要方法:init:初始化函数,通常用于加载数据集和进行必要的预处理len:返回数据集的总长度getitem:根据索引返回对应的数据样本和
- 从零开始认识深度学习工具:TensorFlow vs PyTorch
赛卡
青少年AI入门深度学习tensorflowpytorchmatplotlib
从零开始认识深度学习工具:TensorFlowvsPyTorch学习前的知识准备什么是深度学习?深度学习就像教电脑从经验中学习。就像你通过反复练习学会骑自行车一样,计算机会通过大量数据自动发现规律。例如:识别照片中的动物(图像识别)把语音转成文字(语音识别)自动翻译不同语言(自然语言处理)为什么需要工具框架?想象你要搭建乐高城堡,有两种选择:自己烧制每一块积木(相当于从零开始写数学计算代码)使用现
- pytorch学习笔记(三)
shushu113
pytorch学习笔记
pytorch学习笔记(三)一、模型保存用pathlib库中的方法来保存模型参数1)保存模型参数frompathlibimportPathMODEL_PATH=Path("models")#Path更好表示路径#parents表示当前路径是否存在多级嵌套,exist_ok表示当前文件夹存在也不影响MODEL_PATH.mkdir(parents=True,exist_ok=True)MODEL_N
- 零基础学习人工智能—Python—Pytorch学习(十三)
kiba518
人工智能python学习pytorch开发语言
前言最近学习了一新概念,叫科学发现和科技发明,科学发现是高于科技发明的,而这个说法我觉得还是挺有道理的,我们总说中国的科技不如欧美,但我们实际感觉上,不论建筑,硬件还是软件,理论,我们都已经高于欧美了,那为什么还说我们不如欧美呢?科学发现是高于科技发明就很好的解释了这个问题,即,我们的在线支付,建筑行业等等,这些都是科技发明,而不是科学发现,而科学发现是引领科技发明的,而欧美在科学发现上远远领先我
- 零基础学习人工智能—Python—Pytorch学习(十一)
kiba518
人工智能python学习pytorch开发语言
前言本文主要介绍tensorboard的使用。tensorboard是一个可视化的,支持人工智能学习的一个工具。tensorboard的官方地址:https://www.tensorflow.org/tensorboard本文内容来自视频教程16课,个人感觉对于tensorboard讲的非常好。Tensorboard的使用使用代码如下:importtorchimporttorch.nnasnnim
- pytorch学习14之读写文件
wuxuand
pytorch+深度学习pytorch学习人工智能
将训练的模型保存:用在其他环境中(比如在部署中进行预测)。用于定期保存中间结果,在一个耗时较长的训练过程运行中,以确保在服务器电源被不小心断掉时,损失的计算结果不会过于严重。因此,学习如何加载和存储权重向量和整个模型。1、加载和保存张量一个张量:调用load和save函数分别读写它们。这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。load读取已经存好的文件。importto
- 【pytorch学习笔记,利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn】
徳一
pytorch学习深度学习pytorch学习
学习的作者链接:link一、安装pytorch环境1.打开打开anaconda的终端后condaenvlist然后创建一个名字叫pytorch,python是3.8版本的环境condacreate-npytorchpython=3.8再次看环境condaenvlist#condaenvironments:#显示如下环境base*D:\anacondapytorchD:\anaconda\envs\
- PyTorch学习DAY2transforms各种操作
沙鳄鱼
pytorch机器学习
人民币二分类数据数据收集-->Img,Label数据划分-->trainvalidtest数据读取-->DataLoader(Sampler-->Index,Dataset-->Img,Label)数据预处理-->transformstorch.utils.data.DataLoader功能:构建可迭代的数据装载器dataset:Dataset类,决定数据从哪读取及如何读取batchsize:批大
- 零基础学习人工智能—Python—Pytorch学习(一)
kiba518
人工智能python学习pytorch开发语言
前言其实学习人工智能不难,就跟学习软件开发一样,只是会的人相对少,而一些会的人写文章,做视频又不好好讲。比如,上来就跟你说要学习张量,或者告诉你张量是向量的多维度等等模式的讲解;目的都是让别人知道他会这个技术,但又不想让你学。对于学习,多年的学习经验,和无数次的回顾学习过程,都证明了一件事,如果一篇文章,一个视频,一个课程,我没学明白,那问题一定不在我,而是上课的主动或被动的不想让我学会,所以,出
- PyTorch学习之torch.nn.functional.conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.functional.conv2d函数一、简介torch.nn.functional.conv2d是PyTorch中用于进行二维卷积操作的函数。卷积操作是深度学习中卷积神经网络(CNN)的核心部分,用于提取图像特征,常见于图像分类、目标检测和语义分割等任务中。二、基本语法torch.nn.functional.conv2d(input,weight,bias=
- PyTorch学习之torch.nn.Conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.Conv2d函数一、简介torch.nn.Conv2d是PyTorch中用于实现二维卷积层的类,这个类可以说是对torch.nn.functional.Conv2d的进一步封装,使其使用起来更加的傻瓜式。二、基本语法torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,d
- Pytorch学习笔记(十六)Image and Video - Transfer Learning for Computer Vision Tutorial
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中ImageandVideo章节的TransferLearningforComputerVisionTutorial部分。官网链接:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html完整网盘链接:https://pan.baidu.com/s/1L9PVZ-KRDGVER
- Pytorch学习笔记(十一)Learning PyTorch - What is torch.nn really
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中LearningPyTorch章节的Whatistorch.nnreally?部分。主要是教你如何一步一步将最原始的代码进行重构至pytorch标准的代码,如果你已经熟悉了如何使用原始代码以及pytorch标准形式构建模型,可以跳过这一篇。官网链接:https://pytorch.org/tutorials/beginner/nn_tutorial.html
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- Pytorch学习之路(2)
AAAx1anyu
Pytorch学习之旅pytorch学习人工智能
(PS:请先阅读Pytorch学习之路(1)开篇注释)【因为我也是小菜鸟】Pytorch基础知识1.张量(1)简介0维张量——标量(数字)1维张量——向量2维张量——矩阵3维张量——时间序列数据股价文本数据单张彩色图片(RGB)4维张量——图像5维张量——视频张量的核心是一个数据容器(2)创建tensor1).随机初始化矩阵[torch.rand()]importtorchx=torch.rand
- Pytorch学习笔记(二)
不牌不改
【Pytorch学习】pytorch深度学习python
后续遇到一些函数等知识,还会进行及时的补充。tensor的创建使用pytorch中的列表创建tensortensor=torch.Tensor([[-1,1],[0,2<
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- PyTorch实现CIFAR-10分类代码
曹勖之
PyTorch学习之路深度学习pytorch
这篇是PyTorch学习之路第七篇,用于记录PyTorch实现CIFAR-10分类代码(书上的代码有好多冗余)目录完整代码(还未训练)完整代码(已训练,直接载入模型)下面实例数据集位于:C:\Users\22130\Learning_Pytorch\dataset完整代码(还未训练)importtorchimporttorchvisionimporttorchvision.transformsas
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l