目录
1 概述
1.1 数据预处理与特征工程
数据挖掘的五大流程:
1.2 sklearn中的数据预处理和特征工程
2 数据预处理 Preprocessing & Impute
2.1 数据无量纲化
preprocessing.MinMaxScaler数据归一化
preprocessing.StandardScaler数据标准化
StandardScaler和MinMaxScaler选哪个?
2.2 缺失值
impute.SimpleImputer
BONUS:用Pandas和Numpy进行填补
2.3 处理分类型特征:编码与哑变量
preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值
preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
preprocessing.OneHotEncoder:独热编码,创建哑变量
BONUS:数据类型以及常用的统计量
2.4 处理连续型特征:二值化与分段
sklearn.preprocessing.Binarizer
preprocessing.KBinsDiscretizer
3. 特征选择 feature_selection
3.1 Filter过滤法
3.1.1 方差过滤
3.1.2 相关性过滤
3.1.3 过滤法总结
3.2 Embedded嵌入法
feature_selection.SelectFromModel
3.3 Wrapper包装法
feature_selection.RFE
3.4 特征选择总结
1.获取数据
模块preprocessing:几乎包含数据预处理的所有内容
模块Impute:填补缺失值专用
模块feature_selection:包含特征选择的各种方法的实践
1.准备数据
from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
import pandas as pd
pd.DataFrame(data)
2.实现归一化
scaler=MinMaxScaler() #实例化
scaler=scaler.fit(data) #fit,在这里本质就是生成min(x)和max(x)
result=scaler.transform(data) #通过接口导出结果
result
result_=scaler.fit_transform(data) #训练和导出结果一步达成
result_
3.将归一化后的结果逆转
data1=scaler.inverse_transform(result)
pd.DataFrame(data1)
4.使用MinMaxScaler的参数feature_range实现将数据归一化到[0,1]以外的范围中
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler=MinMaxScaler(feature_range=[5,10]) #依然实例化
result=scaler.fit_transform(data) #fit_transform一步导出结果
pd.DataFrame(result)
注意:当X中的特征数量非常多的时候,fit会报错并表示,数据量太大了我计算不了 ,此时使用partial_fit作为训练接口 ,scaler = scaler.partial_fit(data)
5.BONUS: 使用numpy来实现归一化
import numpy as np
X=np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
#归一化
X_nor=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
pd.DataFrame(X_nor)
逆转归一化
#逆转归一化
X_returned=X_nor*(X.max(axis=0)-X.min(axis=0))+X.min(axis=0)
X_returned
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler=StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差
scaler.mean_ #查看均值的属性mean_ array([-0.125, 9. ])
scaler.var_ #查看方差的属性var array([ 0.546875, 35. ])
x_std = scaler.transform(data) #通过接口导出结果
x_std.mean() #导出的结果是一个数组,用mean()查看均值0
x_std.std() #用std()查看方差,1
scaler.fit_transform(data) #使用fit_transform(data)一步达成结果
'''
array([[-1.18321596, -1.18321596],
[-0.50709255, -0.50709255],
[ 0.16903085, 0.16903085],
[ 1.52127766, 1.52127766]])
'''
scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化
'''
array([[-1. , 2. ],
[-0.5, 6. ],
[ 0. , 10. ],
[ 1. , 18. ]])
'''
机器学习和数据挖掘中所使用的数据,永远不可能是完美的。很多特征,对于分析和建模来说意义非凡,但对于实 际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况。因 此,数据预处理中非常重要的一项就是处理缺失值。
import pandas as pd
data=pd.read_csv(r"E:\数据分析师学习\Narrativedata.csv",index_col=0,engine='python')
data.head()
在这里,我们使用从泰坦尼克号提取出来的数据,这个数据有三个特征,一个数值型,两个字符型,标签也是字符 型。从这里开始,我们就使用这个数据给大家作为例子,让大家慢慢熟悉sklearn中数据预处理的各种方式。
参数 |
含义&输入 |
missing_values |
告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan |
strategy |
我们填补缺失值的策略,默认均值。 输入“mean”使用均值填补(仅对数值型特征可用) 输入“median"用中值填补(仅对数值型特征可用) 输入"most_frequent”用众数填补(对数值型和字符型特征都可用) 输入“constant"表示请参考参数“fill_value"中的值(对数值型和字符型特征都可用) |
fill_value |
当参数startegy为”constant"的时候可用,可输入字符串或数字表示要填充的值,常用0 |
copy |
默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去。 |
1.填补年龄
#填补年龄
Age = data.loc[:,"Age"].values.reshape(-1,1) #sklearn当中特征矩阵必须是二维
2.实例化,查看均值、中值和0的填补方法
from sklearn.impute import SimpleImputer
#实例化
imp_mean = SimpleImputer() #默认均值填补
imp_median = SimpleImputer(strategy="median") #用中位数填补
imp_0 = SimpleImputer(strategy="constant",fill_value=0) #用0填补
#fit_transform一步完成调取结果
imp_mean = imp_mean.fit_transform(Age)
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)
#在这里我们使用中位数填补Age,均值太多小数位数
data.loc[:,"Age"] = imp_median
#使用众数填补Embarked
Embarked = data.loc[:,"Embarked"].values.reshape(-1,1) #增维数
imp_mode = SimpleImputer(strategy = "most_frequent")
data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked)
data.info()
import pandas as pd
data=pd.read_csv(r"E:\数据分析师学习\Narrativedata.csv",index_col=0,engine='python')
data.head()
data.loc[:,"Age"]=data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna在DataFrame里面直接进行填补
data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False
data.info()
from sklearn.preprocessing import LabelEncoder
y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维
le = LabelEncoder() #实例化
label=le.fit_transform(y) #也可以直接fit_transform一步到位
le.classes_
'''
输出array(['No', 'Unknown', 'Yes'], dtype=object)
'''
data.iloc[:,-1]=label
data.head()
简化写法
from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1]=LabelEncoder().fit_transform(data.iloc[:,-1])
data.head()
from sklearn.preprocessing import OrdinalEncoder
#接口categories_对应LabelEncoder的接口classes_,一模一样的功能
data_ = data.copy()
data_.head()
#categories_可以查看类别
OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_
'''
[array(['female', 'male'], dtype=object), array(['C', 'Q', 'S'], dtype=object)]
'''
data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])
data_.head()
from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:,1:-1]
enc = OneHotEncoder(categories='auto').fit(X)
result=OneHotEncoder(categories='auto').fit_transform(X).toarray()
#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连
newdata = pd.concat([data,pd.DataFrame(result)],axis=1)
newdata.head()
enc.get_feature_names() #查看两列的命名
'''
array(['x0_female', 'x0_male', 'x1_C', 'x1_Q', 'x1_S'], dtype=object)
'''
#依然可以还原
pd.DataFrame(enc.inverse_transform(result))
#删除原来的2列
newdata.drop(["Sex","Embarked"],axis=1,inplace=True)
#对剩下的每一列进行重命名
newdata.columns =["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]
newdata.head()
特征可以做哑变量,标签也可以吗?可以,使用类sklearn.preprocessing.LabelBinarizer可以对做哑变量,许多算法都可以处理多标签问题(比如说决策树),但是这样的做法在现实中不常见.
#将年龄二值化
data_2 = data.copy()
from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X) #threshold=30小于30岁的分一类,大于30岁的分一类
transformer
参数 |
含义&输入 |
n_bins |
每个特征中分箱的个数,默认5,一次会被运用到所有导入的特征 |
encode |
编 码 的 方 式 , 默 认 “onehot” "onehot":做哑变量,之后返回一个稀疏矩阵,每一列是一个特征中的一个类别,含有该类别的样本表示为1,不含的表示为0 “ordinal”:每个特征的每个箱都被编码为一个整数,返回每一列是一个特征,每个特征下含 有不同整数编码的箱的矩阵 "onehot-dense":做哑变量,之后返回一个密集数组。 |
strategy |
用 来 定 义 箱 宽 的 方 式 , 默 认 "quantile" "uniform":表示等宽分箱,即每个特征中的每个箱的最大值之间 差为 ( 特 征 .max() - 特 征 .min())/(n_bins) "quantile":表示等位分箱,即每个特征中的每个箱内的样本数量都相同 "kmeans":表示按聚类分箱,每个箱中的值到最近的一维k均值聚类的簇心得距离都相同 |
from sklearn.preprocessing import KBinsDiscretizer
X = data.iloc[:,0].values.reshape(-1,1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)
#查看转换后分的箱:变成了一列中的三箱set(est.fit_transform(X).ravel())
est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform') #查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
当数据预处理完成后,我们就要开始进行特征工程了。
特征提取 (feature extraction) |
特征创造 (feature creation) |
特征选择 (feature selection) |
从文字,图像,声音等其他非结构化数据中提取新信息作为特征。比如说,从淘宝宝贝的名称中提取出产品类别,产品颜色,是否是网红产品等等。 |
把现有特征进行组合,或互相计算,得到新的特征。比如说,我们有一列特征是速度,一列特征是距离,我们就可以通过让两列相处,创造新的特征:通过距离所花的时间。 |
从所有的特征中,选择出有意义,对模型有帮助的特征,以避免必须将所有特征都导入模型去训练的情况。 |
在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!
一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间。技术能够让模型起飞,前提 是你和业务人员一样理解数据。所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。来看完 整版泰坦尼克号数据中的这些特征:
其中是否存活是我们的标签。很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征, 可以直接删除。姓名,舱位等级,船舱编号,也基本可以判断是相关性比较低的特征。性别,年龄,船上的亲人数 量,这些应该是相关性比较高的特征。
所以,特征工程的第一步是:理解业务。
当然了,在真正的数据应用领域,比如金融,医疗,电商,我们的数据不可能像泰坦尼克号数据的特征这样少,这 样明显,那如果遇见极端情况,我们无法依赖对业务的理解来选择特征,该怎么办呢?我们有四种方法可以用来选 择特征:过滤法,嵌入法,包装法,和降维算法。
#导入数据,让我们使用digit recognizor数据来一展身手
import pandas as pd
data = pd.read_csv(open(r"E:\数据分析师学习\data\digit_recognizor.csv",encoding='gbk'))
data.head()
X = data.iloc[:,1:] #第一列之后的所有列
y = data.iloc[:,0] #第一列的标签数字
X.shape
'''
(42000, 784)
'''
过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关 性的各项指标来选择特征。
3.1.1.1 VarianceThreshold
这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold() #实例化,不填参数默认方差为0
X_var0 = selector.fit_transform(X) #获取删除不合格特征之后的新特征矩阵
#也可以直接写成 X = VairanceThreshold().fit_transform(X)
X_var0.shape
'''
(42000, 708)
'''
降低40个维度
可以看见,我们已经删除了方差为0的特征,但是依然剩下了708多个特征,明显还需要进一步的特征选择。然而,如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位。比如说,我们希望留下一半的 特征,那可以设定一个让特征总数减半的方差阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入就好了:
import numpy as np
np.median(X.var().values)
'''
1352.286703180131
'''
import numpy as np
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
#X.var().values
#np.median(X.var().values)
X_fsvar.shape
'''
输出结果(42000, 392)
'''
当特征是二分类时,特征的取值就是伯努利随机变量,这些变量的方差可以计算为:
其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率。
若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
X_bvar = VarianceThreshold(.8 * (1 - .8)).fit_transform(X)
X_bvar.shape
'''
(42000, 685)
'''
3.1.1.2 方差过滤对模型的影响
我们这样做了以后,对模型效果会有怎样的影响呢?在这里,我为大家准备了KNN和随机森林分别在方差过滤前和 方差过滤后运行的效果和运行时间的对比。KNN是K近邻算法中的分类算法,其原理非常简单,是利用每个样本到 其他样本点的距离来判断每个样本点的相似度,然后对样本进行分类。KNN必须遍历每个特征和每个样本,因而特 征越多,KNN的计算也就会越缓慢。由于这一段代码对比运行时间过长,所以我为大家贴出了代码和结果。
1. 导入模块并准备数据
我们从模块neighbors导入KNeighborsClassfier缩写为KNN,导入随机森林缩写为RFC,然后导入交叉验证模块和numpy。其中未过滤的数据是X和y,使用中位数过滤后的数据是X_fsvar,都是我们之前已经运行过的代码。
2. KNN方差过滤前
#======【TIME WARNING:35mins +】======#
cross_val_score(KNN(),X,y,cv=5).mean()
#python中的魔法命令,可以直接使用%%timeit来计算运行这个cell中的代码所需的时间
#为了计算所需的时间,需要将这个cell中的代码运行很多次(通常是7次)后求平均值,因此运行%%timeit的时间会 远远超过cell中的代码单独运行的时间
#======【TIME WARNING:4 hours】======#
%%timeit cross_val_score(KNN(),X,y,cv=5).mean()
3. KNN方差过滤后
#======【TIME WARNING:20 mins+】======#
cross_val_score(KNN(),X_fsvar,y,cv=5).mean()
#======【TIME WARNING:2 hours】======#
%%timeit cross_val_score(KNN(),X,y,cv=5).mean()
可以看出,对于KNN,过滤后的效果十分明显:准确率稍有提升,但平均运行时间减少了10分钟,特征选择过后算 法的效率上升了1/3。那随机森林又如何呢?
4. 随机森林方差过滤前
cross_val_score(RFC(n_estimators=10,random_state=0),X,y,cv=5).mean()
5. 随机森林方差过滤后
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsvar,y,cv=5).mean()
首先可以观察到的是,随机森林的准确率略逊于KNN,但运行时间却连KNN的1%都不到,只需要十几秒钟。其次,方差过滤后,随机森林的准确率也微弱上升,但运行时间却几乎是没什么变化,依然是11秒钟。
为什么随机森林运行如此之快?为什么方差过滤对随机森林没很大的有影响?这是由于两种算法的原理中涉及到的 计算量不同。最近邻算法KNN,单棵决策树,支持向量机SVM,神经网络,回归算法,都需要遍历特征或升维来进 行运算,所以他们本身的运算量就很大,需要的时间就很长,因此方差过滤这样的特征选择对他们来说就尤为重 要。但对于不需要遍历特征的算法,比如随机森林,它随机选取特征进行分枝,本身运算就非常快速,因此特征选 择对它来说效果平平。这其实很容易理解,无论过滤法如何降低特征的数量,随机森林也只会选取固定数量的特征 来建模;而最近邻算法就不同了,特征越少,距离计算的维度就越少,模型明显会随着特征的减少变得轻量。因 此,过滤法的主要对象是:需要遍历特征或升维的算法们,而过滤法的主要目的是:在维持算法表现的前提下,帮 助算法们降低计算成本。
思考:过滤法对随机森林无效,却对树模型有效?
从算法原理上来说,传统决策树需要遍历所有特征,计算不纯度后进行分枝,而随机森林却是随机选择特征进 行计算和分枝,因此随机森林的运算更快,过滤法对随机森林无用,对决策树却有用。
在sklearn中,决策树和随机森林都是随机选择特征进行分枝(不记得的小伙伴可以去复习第一章:决策树, 参数random_state),但决策树在建模过程中随机抽取的特征数目却远远超过随机森林当中每棵树随机抽取 的特征数目(比如说对于这个780维的数据,随机森林每棵树只会抽取10~20个特征,而决策树可能会抽取300~400个特征),因此,过滤法对随机森林无用,却对决策树有用。
也因此,在sklearn中,随机森林中的每棵树都比单独的一棵决策树简单得多,高维数据下的随机森林的计算 比决策树快很多。
对受影响的算法来说,我们可以将方差过滤的影响总结如下:
阈值很小 被过滤掉得特征比较少 |
阈值比较大 被过滤掉的特征有很多 |
|
模型表现 |
不会有太大影响 |
可能变更好,代表被滤掉的特征大部分是噪音 也可能变糟糕,代表被滤掉的特征中很多都是有效特征 |
运行时间 |
可能降低模型的运行时间基于方差很小的特征有多少当方差很小的特征不多时对模型没有太大影响 |
一定能够降低模型的运行时间 算法在遍历特征时的计算越复杂,运行时间下降得越多 |
在我们的对比当中,我们使用的方差阈值是特征方差的中位数,因此属于阈值比较大,过滤掉的特征比较多的情 况。我们可以观察到,无论是KNN还是随机森林,在过滤掉一半特征之后,模型的精确度都上升了。这说明被我们 过滤掉的特征在当前随机模式(random_state = 0)下大部分是噪音。那我们就可以保留这个去掉了一半特征的数据,来为之后的特征选择做准备。当然,如果过滤之后模型的效果反而变差了,我们就可以认为,被我们过滤掉的 特征中有很多都有有效特征,那我们就放弃过滤,使用其他手段来进行特征选择。
思考:虽然随机森林算得快,但KNN的效果比随机森林更好?
调整一下n_estimators试试看吧O(∩_∩)O,随机森林是个非常强大的模型哦~
3.1.1.3 选取超参数threshold
我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?答案是:每个数 据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法 继续削减特征数量。
方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的 特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪 音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息。
3.1.2.1 卡方过滤
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负 特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest 这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目 的无关的特征。
另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已 经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中 位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后模型的表现反而降低了,那我们就不会使用方差过滤 后的数据,而是使用原数据):
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#假设在这里我一直我需要300个特征
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
X_fschi.shape
#验证一下模型的效果如何:
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
'''
0.9344761904761905
'''
可以看出,模型的效果降低了,这说明我们在设定k=300的时候删除了与模型相关且有效的特征,我们的K值设置 得太小,要么我们需要调整K值,要么我们必须放弃相关性过滤。当然,如果模型的表现提升,则说明我们的相关 性过滤是有效的,是过滤掉了模型的噪音的,这时候我们就保留相关性过滤的结果。
3.1.2.2 选取超参数K
那如何设置一个最佳的K值呢?在现实数据中,数据量很大,模型很复杂的时候,我们也许不能先去跑一遍模型看看效果,而是希望最开始就能够选择一个最优的超参数k。那第一个方法,就是我们之前提过的学习曲线:
%matplotlib inline
import matplotlib.pyplot as plt
score = []
for i in range(390,200,-10):
X_fschi = SelectKBest(chi2, k=i).fit_transform(X_fsvar, y)
once = cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
score.append(once)
plt.plot(range(390,200,-10),score)
plt.show()
通过这条曲线,我们可以观察到,随着K值的不断增加,模型的表现不断上升,这说明,K越大越好,数据中所有的 特征都是与标签相关的。但是运行这条曲线的时间同样也是非常地长,接下来我们就来介绍一种更好的选择k的方法:看p值选择k。
卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断的边界,具体我们可以这样来看:
P值 |
<=0.05或0.01 |
>0.05或0.01 |
数据差异 |
差异不是自然形成的 |
这些差异是很自然的样本误差 |
相关性 |
两组数据是相关的 |
两组数据是相互独立的 |
原假设 |
拒绝原假设,接受备择假设 |
接受原假设 |
从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值。
chivalue, pvalues_chi = chi2(X_fsvar,y)
chivalue
pvalues_chi
#k取多少?我们想要消除所有p值大于设定值,比如0.05或0.01的特征:
k = chivalue.shape[0] - (pvalues_chi > 0.05).sum()
#X_fschi = SelectKBest(chi2, k= 填 写 具 体 的 k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
k
'''
392
'''
可以观察到,所有特征的p值都是0,这说明对于digit recognizor这个数据集来说,方差验证已经把所有和标签无关的特征都剔除了,或者这个数据集本身就不含与标签无关的特征。在这种情况下,舍弃任何一个特征,都会舍弃对模型有用的信息,而使模型表现下降,因此在我们对计算速度感到满意时,我们不需要使用相关性过滤来过滤我 们的数据。如果我们认为运算速度太缓慢,那我们可以酌情删除一些特征,但前提是,我们必须牺牲模型的表现。接下来,我们试试看用其他的相关性过滤方法验证一下我们在这个数据集上的结论。
3.1.2.3 F检验
F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也 可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回 归)两个类。其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。
和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要 设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我 们会先将数据转换成服从正态分布的方式。
F检验的本质是寻找两组数据之间的线性关系,其原假设是”数据不存在显著的线性关系“。它返回F值和p值两个统 计量。和卡方过滤一样,我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。以F检验的分类为例,我们继续 在数字数据集上来进行特征选择:
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvar,y)
F
pvalues_f
k = F.shape[0] - (pvalues_f > 0.05).sum()
k
#X_fsF = SelectKBest(f_classif, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=5).mean()
'''
392
'''
得到的结论和我们用卡方过滤得到的结论一模一样:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。
3.1.2.4 互信息法
互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法。和F检验相似,它既可以做回归也可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和feature_selection.mutual_info_regression(互信息回归)。这两个类的用法和参数都和F检验一模一样,不过互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系。
互信息法不返回p值或F值类似的统计量,它返回“每个特征与目标之间的互信息量的估计”,这个估计量在[0,1]之间取值,为0则表示两个变量独立,为1则表示两个变量完全相关。以互信息分类为例的代码如下:
from sklearn.feature_selection import mutual_info_classif as MIC
result = MIC(X_fsvar,y)
k = result.shape[0] - sum(result <= 0)
k
#X_fsmic = SelectKBest(MIC, k= 填 写 具 体 的 k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()
'''
392
'''
所有特征的互信息量估计都大于0,因此所有特征都与标签相关。
当然了,无论是F检验还是互信息法,大家也都可以使用学习曲线,只是使用统计量的方法会更加高效。当统计量 判断已经没有特征可以删除时,无论用学习曲线如何跑,删除特征都只会降低模型的表现。当然了,如果数据量太 庞大,模型太复杂,我们还是可以牺牲模型表现来提升模型速度,一切都看大家的具体需求。
到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。通常来说,我会建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。所有信息被总结在下表,大家自取:
类 |
说明 |
超参数的选择 |
VarianceThreshold |
方差过滤,可输入方差阈值,返回方差大于阈值的新特征矩阵 |
看具体数据究竟是含有更多噪声还是更多有效特征 一般就使用0或1来筛选 也可以画学习曲线或取中位数跑模型来帮助确认 |
SelectKBest |
用来选取K个统计量结果最佳的特征,生成符合统计量要求的新特征矩阵 |
看配合使用的统计量 |
chi2 |
卡方检验,专用于分类算法,捕捉相关性 |
追求p小于显著性水平的特征 |
f_classif |
F检验分类,只能捕捉线性相关性要求数据服从正态分布 |
追求p小于显著性水平的特征 |
f_regression |
F检验回归,只能捕捉线性相关性要求数据服从正态分布 |
追求p小于显著性水平的特征 |
mutual_info_classif |
互信息分类,可以捕捉任何相关性不能用于稀疏矩阵 |
追求互信息估计大于0的特征 |
mutual_info_regression |
互信息回归,可以捕捉任何相关性不能用于稀疏矩阵 |
追求互信息估计大于0的特征 |
嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。并且,由于考虑特征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤的特征)都会因为缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版。
然而,嵌入法也不是没有缺点。
过滤法中使用的统计量可以使用统计知识和常识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用的权值系数却没有这样的范围可找——我们可以说,权值系数为0的特征对模型丝毫没有作用,但当大量特征都对模型有贡献且贡献不一时,我们就很难去界定一个有效的临界值。这种情况下,模型权值系数就是我们的超参数,我们或许需要学习曲线,或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。在我们之后的学习当中,每次讲解新的算法,我都会为大家提到这个算法中的特征工程是如何处理,包括具体到每个算法的嵌入法如何使用。在这堂课中,我们会为大家讲解随机森林和决策树模型的嵌入法。
另外,嵌入法引入了算法来挑选特征,因此其计算速度也会和应用的算法有很大的关系。如果采用计算量很大,计算缓慢的算法,嵌入法本身也会非常耗时耗力。并且,在选择完毕之后,我们还是需要自己来评估模型。
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier as RFC
RFC_ = RFC(n_estimators =10,random_state=0)
X_embedded = SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
#在这里我只想取出来有限的特征。0.005这个阈值对于有780个特征的数据来说,是非常高的阈值,因为平均每个特征
#只能够分到大约0.001的feature_importances_
X_embedded.shape
'''
(42000, 47)
'''
用学习曲线来找最佳阈值
import numpy as np
import matplotlib.pyplot as plt
RFC_.fit(X,y).feature_importances_
threshold = np.linspace(0,(RFC_.fit(X,y).feature_importances_).max(),20)
score = []
for i in threshold:
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
score.append(once)
plt.plot(threshold,score)
plt.show()
X_embedded = SelectFromModel(RFC_,threshold=0.00067).fit_transform(X,y)
X_embedded.shape
'''
(42000, 324)
'''
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
'''
0.9391190476190475
'''
score2 = []
for i in np.linspace(0,0.000141,20):
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
score2.append(once)
plt.figure(figsize=[20,5])
plt.plot(np.linspace(0,0.000141,20),score2)
plt.xticks(np.linspace(0,0.000141,20))
plt.show()
查看结果,果然0.00067并不是最高点,真正的最高点0.000564已经将模型效果提升到了94%以上。我们使用0.000564
X_embedded = SelectFromModel(RFC_,threshold=0.000564).fit_transform(X,y)
X_embedded.shape
'''
(42000, 340)
'''
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
'''
0.940
'''
来跑一跑我们的SelectFromModel:
#我们可能已经找到了现有模型下的最佳结果,如果我们调整一下随机森林的参数呢?
cross_val_score(RFC(n_estimators=100,random_state=0),X_embedded,y,cv=5).mean()
'''
0.965842857142857
'''
from sklearn.feature_selection import RFE
RFC_ = RFC(n_estimators =10,random_state=0)
selector = RFE(RFC_, n_features_to_select=340, step=50).fit(X, y)
selector.support_.sum()
selector.ranking_
X_wrapper = selector.transform(X)
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
我们也可以对包装发画学习曲线:
score = []
for i in range(1,751,50):
X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()