- 近期计算机领域的热点技术
0dayNu1L
云计算量子计算人工智能
随着科技的飞速发展,计算机领域的新技术、新趋势层出不穷。本文将探讨近期计算机领域的几个热点技术趋势,并对它们进行简要的分析和展望。一、人工智能与机器学习人工智能(AI)和机器学习(ML)是近年来计算机领域最为热门的话题之一。AI和ML技术已经广泛应用于图像识别、自然语言处理、智能推荐等领域,并取得了显著的成果。随着技术的不断进步,AI和ML将更深入地渗透到各个行业,为人类社会带来更多便利和效益。在
- 如何在 Python 中将语音转换为文本
无水先生
语音处理人工智能综合pythonxcode开发语言
一、说明 学习如何使用语音识别Python库执行语音识别,以在Python中将音频语音转换为文本。想要更快地编码吗?我们的Python代码生成器让您只需点击几下即可创建Python脚本。现在就现在试试!二、语言AI库2.1相当给力的转文字库 语音识别是计算机软件识别口语中的单词和短语并将其转换为人类可读文本的能力。在本教程中,您将学习如何使用SpeechRecognition库在Python中
- 书籍-《动手学深度学习(英文版)》
书籍:DiveintoDeepLearning作者:AstonZhang,ZacharyC.Lipton,MuLi,AlexanderJ.Smola出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《动手学深度学习(英文版)》01书籍介绍深度学习已经彻底改变了模式识别,为计算机视觉、自然语言处理和自动语音识别等领域提供了强大的工具。应用深度学
- 向量数据库 PieCloudVector 进阶系列丨打造以 LLM 为基础的聊天机器人
本系列前两篇文章深入探讨了PieCloudVector在图片和音频数据上的应用之后,本文将聚焦于文本数据,探索PieCloudVector对于文本数据的向量化处理、存储以及检索,并最终结合LLM打造聊天机器人的全流程。在自然语言处理任务中涉及到大量对文本数据的处理、分析和理解,而向量数据库在其中发挥了重要的作用。本文为《PieCloudVector进阶系列》的第三篇,将为大家介绍如何利用PieCl
- 【十 自然语言处理项目实战】【10.2 数据收集与预处理】
再见孙悟空_
#自然语言处理人工智能知识图谱transformer自然语言处理数据收集自然语言处理预处理自然语言处理项目
各位在数据泥潭里打滚的勇士们,今天咱们要聊的这个话题,就像学做川菜必须掌握的"火锅底料炒制法"——数据收集与预处理!这玩意儿看着像脏活累活,实则是决定你模型上限的生死关卡。作为一个曾把BERT训成人工智障的老司机,这就把五年掉坑经验熬成一锅十全大补汤!(戴上橡胶手套准备掏数据)一、数据收集的野路子:比盗墓还刺激的冒险1.1公开数据集寻宝图(附藏宝坐标)①正道的光:Kaggle(数据界的沃尔玛):搜
- win7下python3.6通过pip安装scipy报错的解决办法
青松一夏
python
一、问题描述通过pip方式安装了numpy和sklearn,但是sklearn需要依赖于scipy,但当通过pip方式安装scipy时,报错:numpy.distutils.system_info.NotFoundError:nolapack/blasresourcesfound按照网上的教程,并没有找到真正的解决办法,后来我是通过如下方式解决的。二、我的解决方案(1)首先卸载numpypipun
- 【微信小程序变通实现DeepSeek支持语音】
技术与健康
微信小程序小程序
微信小程序实现录音转文字,并调用后端服务(Node.js)进行语音识别和,然后调用DeepSeek处理的完整实现。整体架构前端(微信小程序):实现录音功能。将录音文件上传到后端。接收后端返回的语音识别结果,并显示在可编辑的文本框中。调用DeepSeek处理文本。后端(Node.js):接收小程序上传的录音文件。调用腾讯云语音识别(ASR)服务,将语音转换为文字。返回识别结果给小程序。提供DeepS
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- 理解并使用基于n-gram重叠的示例选择器
shuoac
easyui前端javascriptpython
在AI及自然语言处理任务中,选择与输入最相似的示例可以显著提升生成的质量和上下文相关性。本文将介绍如何使用NGramOverlapExampleSelector工具,通过n-gram重叠来筛选和排序示例,从而帮助实现这一目标。技术背景介绍n-gram重叠技术通过比较输入文本与示例文本在字符或词组上的相似度,计算一个介于0到1之间的分数来表示相似度。这个分数越高,表示文本间的重叠越大。NGramOv
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- 使用CharacterTextSplitter实现文本按字符拆分
bavDHAUO
python
在文本处理任务中,按字符进行拆分是一种简单且有效的方法。本篇文章将介绍如何使用CharacterTextSplitter类对文本进行按字符拆分,并生成适用于下游任务的LangChainDocument对象。技术背景介绍文本拆分是自然语言处理(NLP)中的一个基础步骤,尤其在大文本分块处理、文本摘要等任务中。CharacterTextSplitter是langchain-text-splitters
- 【产品小白】什么是AI产品经理
百事不可口y
产品经理的一步一步人工智能产品经理学习产品运营内容运营用户运营
一、AI产品经理的定义与角色定位AI产品经理是人工智能技术与商业应用之间的核心桥梁,负责将复杂的AI技术转化为满足市场需求的产品。需同时具备技术理解力、商业洞察力和用户思维,既要参与算法选型与数据建模,又要定义产品功能与市场策略,是贯穿产品全生命周期的关键角色。与传统互联网产品经理相比,AI产品经理的独特之处在于:技术深度参与:需理解机器学习、自然语言处理(NLP)、计算机视觉等技术原理,并参与数
- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- 低代码平台未来发展趋势有哪些?
低代码
低代码平台的未来发展趋势呈现出多维度的创新与深化,以下结合JNPF快速开发平台的特性,为您分析其未来的发展方向:1.智能化与AI深度融合低代码平台将与人工智能技术深度融合,实现开发流程的智能化升级。例如,JNPF平台有望通过自然语言处理技术,让开发者仅需用自然语言描述需求,平台即可自动生成初步的应用架构和代码逻辑。此外,AI技术还将用于智能推荐、代码自动生成、流程自动化等功能,进一步提升开发效率。
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- Dyn-VQA:含1452动态问题的视觉问答数据集,需灵活提供知识检索方案,查询、工具与检索时间皆可变。
数据集
2024-11-05,由阿里巴巴集团创建Dyn-VQA数据集,它包含三种类型的“动态”问题,需要复杂的知识检索策略,这些问题的查询、工具和时间都是可变的。这个数据集的创建对于推动mRAG研究和解决现有VQA数据集无法充分反映启发式mRAGs在获取复杂知识方面的刚性问题具有重要意义。数据集地址:Dyn-VQA|多模态检索数据集|自然语言处理数据集一、研究背景:在多模态大型语言模型(MLLMs)中,解
- 关于CanvasRenderer.SyncTransform触发调用的机制
1)关于CanvasRenderer.SyncTransform触发调用的机制2)小游戏Spine裁剪掉帧问题3)DedicatedServer性能问题4).mp4视频放入RT进行渲染的性能分析闭坑指南这是第421篇UWA技术知识分享的推送,精选了UWA社区的热门话题,涵盖了UWA问答、社区帖子等技术知识点,助力大家更全面地掌握和学习。UWA社区主页:community.uwa4d.comUWAQ
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 用 AI 提高开发效率:自动生成代码、优化 SQL 查询、写测试用例
Js_x
人工智能sql测试用例
引言人工智能(AI)正在深刻改变软件开发行业。从代码自动补全到SQL查询优化,再到自动化测试,AI工具已经成为开发者提高生产力的重要助手。本文将介绍ChatGPT、GitHubCopilot、Tabnine等AI编程工具的实际应用,帮助开发者更高效地编写代码、优化数据库查询,并自动生成测试用例。1.AI代码生成:提升开发效率1.1ChatGPT代码生成ChatGPT具备强大的自然语言处理能力,可以
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- 理解深度学习1-简介
shangjg3
PyTorch深度学习实战深度学习人工智能
人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是AI的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与AI同义。深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Nat
- 《AI大模型趣味实战》 No3:快速搭建一个漂亮的AI家庭网站-相册/时间线/日历/多用户/个性化配色/博客/聊天室/AI管家(下)
带娃的IT创业者
AI大模型趣味实战人工智能xcodemacos
《AI大模型趣味实战》No3:快速搭建一个漂亮的AI家庭网站-相册/时间线/日历/多用户/个性化配色/博客/聊天室/AI管家(下)摘要本文介绍了家庭网站V1.3版本的更新内容,主要聚焦于AI管家功能的优化与完善。V1.3版本对AI管家模块进行了全面升级,包括使用更快速的GLM-4-Flash模型、优化语音交互体验、改进用户界面以及增强系统稳定性。本文详细解析了这些改进的技术实现,包括语音识别与合成
- 李开复:AI 2.0 时代的价值
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人工智能,AI2.0,价值创造,伦理挑战,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理,AI已经渗透到我们生活的方方面面。李开复,作为一位享誉全球的人工智能专家,在《AI2.0时代的价值》一文中,深刻地探讨了AI2.0时代带来的机遇与挑战,以及AI如何为人类创造价值。AI1.0时代主要集中在规则驱动的系统,例如围棋、象棋等游戏的AI。而AI2.0时代则
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- llama.cpp 和 LLM(大语言模型)
这个懒人
llama语言模型人工智能
llama.cpp和LLM(大语言模型)的介绍,以及两者的关联与区别:1.LLM(LargeLanguageModel,大语言模型)定义:LLM是基于深度学习技术(如Transformer架构)构建的超大参数量的自然语言处理模型。它通过海量文本数据训练,能够生成连贯、语义丰富的文本,完成问答、创作、推理等任务。特点:参数规模大:如GPT-3(1750亿参数)、Llama-65B(650亿参数)等。
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- AI API:快速集成智能化功能的开发利器
桂花饼
AIGCAIAPI人工智能AIGC语言模型AI作画
AIAPI(ArtificialIntelligenceApplicationProgrammingInterface,人工智能应用程序接口)是应用程序接口的一种,专门用于提供人工智能相关功能的开发接口。它允许开发者利用现有的AI模型、工具或服务,将这些功能集成到自己的应用程序中,并为用户带来智能化的体验。AIAPI的核心功能主要与AI技术相关,比如自然语言处理(NLP)、计算机视觉、语音处理、机
- 大模型与自然语言理解(NLU):差异与联系
技术流 Gavin
AIoTpython语言模型ai
近年来,人工智能领域取得了显著进展,尤其是在自然语言处理(NLP)方面。大模型和自然语言理解(NLU)作为NLP的两个重要分支,常常被提及,但它们之间存在着本质区别。1.定义与目标大模型:通常指拥有庞大参数规模(数十亿甚至数千亿)的深度学习模型,例如GPT-3、LaMDA等。它们通过海量文本数据进行训练,旨在学习语言的统计规律,并能够生成流畅、连贯的文本。NLU:是NLP的一个子领域,专注于让机器
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f