本文主要讨论一下推理引擎的推理组织流程,包括 英伟达 tensorrt、华为 CANN 以及 TVM。
对于用户和大多开发者来说,其实不用太关心推理引擎内部是怎么实现推理的,比如你在使用 tensorrt 的时候你只要知道使用流程,怎么去生成 Eng,怎么调用 Eng 去 doInference 就好了。但是你不好奇吗,它到底是怎么 create Eng,怎么 load Eng 去做 inference 的,Eng 到底是个什么东西,它也不能像 .pth、.cfg、.pb 一样用 netron 来直观可视化。这里我们就对 tensorrt、CANN、TVM 的推理组织流程展开讨论一下。
tensorrt 是一个非常好用的高性能推理框架,它的使用方式主要有以下两种:
(1)将 tensorrt 嵌入到成熟的 AI 框架中,如 TF-TRT、Torch-TRT、ONNX-TRT、TVM-TRT 等,大多做法是将 tensorrt 支持的算子优先以 tensorrt 的方式执行,tensorrt 不支持的算子回退到原框架执行;
(2)直接使用 C++ API 或 Python API 去搭 tensorrt 的推理引擎,至于 tensorrt 不原生支持的算子,我可以采用更细粒度的算子进行拼接或替换(如用 resize 替换 upsample,用 clip 激活函数替换 relu6 等)甚至可以直接用 cuda 来自定义算子。
Network Definition 是用于解析模型之后在 tensorrt 中的网络定义,Builder 主要作用是把 Network Definition 按照对应的硬件生成相应的可执行程序,也就是 Engine。如果你进行在线推理的话,其实直接接着进 runtime 就好了。而实际中,我们往往需要把这个 Engine 保存成一个离线模型 .eng,以便于 runtime 过程的解耦,因为 runtime 往往在用户现场,而 runtime 之前的操作往往在家里。这个时候就需要用到 serialize 和 deserialize 了。
通过 serialize(序列化)来生成二进制文件 .eng,也即这里的 Optimized Plans,这个就是所谓的离线模型了。
等去部署的时候,只要我们手里有离线模型就好了,然后借助 deserialize(反序列化)成硬件可执行程序 Engine 后继续执行推理就好了。
所以这么看来,整个 tensorrt createEng 和 doInference 的流程是这样的:
昇腾的 CANN 可能大家接触就没 tessorrt 那么多了,先简单介绍一下。
昇腾 CANN(Compute Architecture for Neural Networks)是华为针对 AI 全场景推出的异构计算框架,它对上支持业界主流的前端AI 框架,向下对用户屏蔽系列化芯片的硬件差异,以丰富的软件栈功能使能(我发现华为很喜欢用 “使能” 这两个词,我也用一下哈哈)用户全场景的人工智能应用。CANN 的架构如下:
下面来谈谈 CANN create .om(昇腾的离线模型)的组织流程。
其实 CANN 公开的信息要比 tensorrt 丰富许多,CANN TBE 软件栈的逻辑架构如下:
其中 Graph Engine(GE)+ Fusion Engine(FE)+ Tensor Boost Engine(TBE)就相当于 tensorrt 里的 builder,下面来看看 GE + FE + TBE 的组织方式:
GE 是图引擎,FE 是融合引擎,TBE 是张量加速引擎。GE 主要作用是解析前端框架、链接后端、调度排布的融合引擎;FE 主要作用是实现算子融合、UB 融合;TBE 主要作用是提供了算子在华为加速卡中的实现编译、任务执行。结合上图,整个流程分成这么几个阶段:2~4 为算子适配替换、5 为子图拆分优化、6 为调度与流程排布。不难看出,经过 6.1 阶段后,实际推理过程中已经不存在所谓的网络层的概念,此时是由一个个 taskinfo 组成了离线模型 .om 文件,最终的 Runtime 时是通过调用 .om 内的信息进行任务下发。
大家都知道,昇腾 CANN 是基于 TVM 的,因此 CANN 的模型编译过程和 TVM 比较相似。TVM 的模型编译流程如下,其离线模型组织的位置在 relay.build -> graph optimize 之后。
TVM 通过 relay.frontend.from_AIFrameworks 来接 AI 框架的模型转换成 relay IR,在 relay IR 上做图优化,完了后面接 compile engine 模块,去做 compute + schedule,然后进行子图编译,这时就到了 TIR 层,会走 TIR PASS,最后是 CodeGen,CodeGen 主要实现了内存分配及指定硬件设备上代码生成,完了就可以序列化成 TVM 的离线模型了(.json 和 .params)。
以上我们讨论了 tensorrt、CANN、TVM 的推理组织流程,如有说的不妥,欢迎交流~
收工~
扫描下方二维码即可关注我的微信公众号【极智视界】,获取更多AI经验分享,让我们用极致+极客的心态来迎接AI !