TCP全称为“传输控制协议(Transmission Control Protocol)”,TCP协议是当今互联网当中使用最为广泛的传输层协议,没有之一。
TCP协议被广泛应用,其根本原因就是提供了详尽的可靠性保证,基于TCP的上层应用非常多,比如HTTP、HTTPS、FTP、SSH等,甚至MySQL底层使用的也是TCP。
为什么网络中会存在不可靠?
现代的计算机大部分都是基于冯诺依曼体系结构的。
虽然这里的输入设备、输出设备、内存、CPU都在一台机器上,但这几个硬件设备是彼此独立的。如果它们之间要进行数据交互,就必须要想办法进行通信,因此这几个设备实际是用“线”连接起来的,其中连接内存和外设之间的“线”叫做IO总线,而连接内存和CPU之间的“线”叫做系统总线。由于这几个硬件设备都是在一台机器上的,因此这里传输数据的“线”是很短的,传输数据时出现错误的概率也非常低。
但如果要进行通信的各个设备相隔千里,那么连接各个设备的“线”就会变得非常长,传输数据时出现错误的概率也会大大增高,此时要保证传输到对端的数据无误,就必须引入可靠性。
总之,网络中存在不可靠的根本原因就是,长距离数据传输所用的“线”太长了,数据在长距离传输过程中就可能会出现各种各样的问题,而TCP就是在此背景下诞生的,TCP就是一种保证可靠性的协议。
思维扩展:
为什么会存在UDP协议?
TCP协议是一种可靠的传输协议,使用TCP协议能够在一定程度上保证数据传输时的可靠性,而UDP协议是一种不可靠的传输协议,那UDP协议这种不可靠的协议存在有什么意义呢?
不可靠和可靠是两个中性词,它们描述的都是协议的特点。
UDP和TCP没有谁最好,只有谁最合适,网络通信时具体采用TCP还是UDP完全取决于上层的应用场景。如果应用场景严格要求数据在传输过程中的可靠性,那么就必须采用TCP协议,如果应用场景允许数据传输出现少量丢包,那么肯定优先选择UDP协议,因为UDP协议足够简单。
TCP报头当中的6位标志位:
TCP报头在内核当中本质就是一个位段类型,给数据封装TCP报头时,实际上就是用该位段类型定义一个变量,然后填充TCP报头当中的各个属性字段,最后将这个TCP报头拷贝到数据的首部,至此便完成了TCP报头的封装。
TCP如何将报头与有效载荷进行分离?
当TCP从底层获取到一个报文后,虽然TCP不知道报头的具体长度,但报文的前20个字节是TCP的基本报头,并且这20字节当中涵盖了4位的首部长度。
因此TCP是这样分离报头与有效载荷的:
需要注意的是,TCP报头当中的4位首部长度描述的基本单位是4字节,这也恰好是报文的宽度。4为首部长度的取值范围是0000 ~ 1111,因此TCP报头最大长度为 15 × 4 = 60 15\times4=60 15×4=60字节,因为基本报头的长度是20字节,所以报头中选项字段的长度最多是40字节。
如果TCP报头当中不携带选项字段,那么TCP报头的长度就是20字节,此时报头当中的4位首部长度的值就为 20 ÷ 4 = 5 20\div4=5 20÷4=5,也就是0101。
TCP如何决定将有效载荷交付给上层的哪一个协议?
应用层的每一个网络进程都必须绑定一个端口号。
而TCP的报头中涵盖了目的端口号,因此TCP可以提取出报头中的目的端口号,找到对应的应用层进程,进而将有效载荷交给对应的应用层进程进行处理。
说明一下: 内核中用哈希的方式维护了端口号与进程ID之间的映射关系,因此传输层可以通过端口号快速找到其对应的进程ID,进而找到对应的应用层进程。
什么是真正的可靠?
在进行网络通信时,一方发出的数据后,它不能保证该数据能够成功被对端收到,因为数据在传输过程中可能会出现各种各样的错误,只有当收到对端主机发来的响应消息后,该主机才能保证上一次发送的数据被对端可靠的收到了,这就叫做真正的可靠。
图注:实线表示该数据能够被对方可靠的收到,虚线则不能保证。
但TCP要保证的是双方通信的可靠性,虽然此时主机A能够保证自己上一次发送的数据被主机B可靠的收到了,但主机B也需要保证自己发送给主机A的响应数据被主机A可靠的收到了。因此主机A在收到了主机B的响应消息后,还需要对该响应数据进行响应,但此时又需要保证主机A发送的响应数据的可靠性…,这样就陷入了一个死循环。
因为只有当一端收到对方的响应消息后,才能保证自己上一次发送的数据被对端可靠的收到了,但双方通信时总会有最新的一条消息,因此无法百分之百保证可靠性。
所以严格意义上来说,互联网通信当中是不存在百分之百的可靠性的,因为双方通信时总有最新的一条消息得不到响应。但实际没有必要保证所有消息的可靠性,我们只要保证双方通信时发送的每一个核心数据都有对应的响应就可以了。而对于一些无关紧要的数据(比如响应数据),我们没有必要保证它的可靠性。因为对端如果没有收到这个响应数据,会判定上一次发送的报文丢失了,此时对端可以将上一次发送的数据进行重传。
这种策略在TCP当中就叫做确认应答机制。需要注意的是,确认应答机制不是保证双方通信的全部消息的可靠性,而是只要一方收到了另一方的应答消息,就说明它上一次发送的数据被另一方可靠的收到了。
32位序号
如果双方在进行数据通信时,只有收到了上一次发送数据的响应才能发下一个数据,那么此时双方的通信过程就是串行的,效率可想而知。
因此双方在进行网络通信时,允许一方向另一方连续发送多个报文数据,只要保证发送的每个报文都有对应的响应消息就行了,此时也就能保证这些报文被对方收到了。
但在连续发送多个报文时,由于各个报文在进行网络传输时选择的路径可能是不一样的,因此这些报文到达对端主机的先后顺序也就可能和发送报文的顺序是不同的。但报文有序也是可靠性的一种,因此TCP报头中的32位序号的作用之一实际就是用来保证报文的有序性的。
TCP将发送出去的每个字节数据都进行了编号,这个编号叫做序列号。
此时接收端收到了这三个TCP报文后,就可以根据TCP报头当中的32位序列号对这三个报文进行顺序重排(该动作在传输层进行),重排后将其放到TCP的接收缓冲区当中,此时接收端这里报文的顺序就和发送端发送报文的顺序是一样的了。
32位确认序号
TCP报头当中的32位确认序号是告诉对端,我当前已经收到了哪些数据,你的数据下一次应该从哪里开始发。
以刚才的例子为例,当主机B收到主机A发送过来的32位序号为1的报文时,由于该报文当中包含1000字节的数据,因此主机B已经收到序列号为1-1000的字节数据,于是主机B发给主机A的响应数据的报头当中的32位确认序号的值就会填成1001。
之后主机B对主机A发来的其他报文进行响应时,发给主机A的响应当中的32为确认序号的填法也是类似的道理。
注意:
报文丢失怎么办?
还是以刚才的例子为例,主机A发送了三个报文给主机B,其中每个报文的有效载荷都是1000字节,这三个报文的32位序号分别是1、1001、2001。
如果这三个报文在网络传输过程中出现了丢包,最终只有序号为1和2001的报文被主机B收到了,那么当主机B在对报文进行顺序重排的时候,就会发现只收到了1-1000和2001-3000的字节数据。此时主机B在对主机A进行响应时,其响应报头当中的32位确认序号填的就是1001,告诉主机A下次向我发送数据时应该从序列号为1001的字节数据开始进行发送。
注意:
因此发送端可以根据对端发来的确认序号,来判断是否某个报文可能在传输过程中丢失了。
为什么要用两套序号机制?
如果通信双方只是一端发送数据,另一端接收数据,那么只用一套序号就可以了。
但实际TCP却没有这么做,根本原因就是因为TCP是全双工的,双方可能同时想给对方发送消息。
因此在进行TCP通信时,双方都需要有确认应答机制,此时一套序号就无法满足需求了,因此需要TCP报头当中出现了两套序号。
总结一下:
TCP的接收缓冲区和发送缓冲区
TCP本身是具有接收缓冲区和发送缓冲区的:
当数据写入到TCP的发送缓冲区后,对应的write/send函数就可以返回了,至于发送缓冲区当中的数据具体什么时候发,怎么发等问题实际都是由TCP决定的。
我们之所以称TCP为传输层控制协议,就是因为最终数据的发送和接收方式,以及传输数据时遇到的各种问题应该如何解决,都是由TCP自己决定的,用户只需要将数据拷贝到TCP的发送缓冲区,以及从TCP的接收缓冲区当中读取数据即可。
需要注意的是,通信双方的TCP层都是一样的,因此通信双方的TCP层都是既有发送缓冲区又有接收缓冲区。
TCP的发送缓冲区和接收缓冲区存在的意义
发送缓冲区和接收缓冲区的作用:
经典的生产者消费者模型:
窗口大小
当发送端要将数据发送给对端时,本质是把自己发送缓冲区当中的数据发送到对端的接收缓冲区当中。但缓冲区是有大小的,如果接收端处理数据的速度小于发送端发送数据的速度,那么总有一个时刻接收端的接收缓冲区会被打满,这时发送端再发送数据过来就会造成数据丢包,进而引起丢包重传等一系列的连锁反应。
因此TCP报头当中就有了16位的窗口大小,这个16位窗口大小当中填的是自身接收缓冲区中剩余空间的大小,也就是当前主机接收数据的能力。
接收端在对发送端发来的数据进行响应时,就可以通过16位窗口大小告知发送端自己当前接收缓冲区剩余空间的大小,此时发送端就可以根据这个窗口大小字段来调整自己发送数据的速度。
理解现象:
为什么会存在标志位?
SYN
ACK
FIN
URG
双方在进行网络通信的时候,由于TCP是保证数据按序到达的,即便发送端将要发送的数据分成了若干个TCP报文进行发送,最终到达接收端时这些数据也都是有序的,因为TCP可以通过序号来对这些TCP报文进行顺序重排,最终就能保证数据到达对端接收缓冲区中时是有序的。
TCP按序到达本身也是我们的目的,此时对端上层在从接收缓冲区读取数据时也必须是按顺序读取的。但是有时候发送端可能发送了一些“紧急数据”,这些数据需要让对方上层提取进行读取,此时应该怎么办呢?
此时就需要用到URG标志位,以及TCP报头当中的16位紧急指针。
recv函数的第四个参数flags有一个叫做MSG_OOB的选项可供设置,其中OOB是带外数据(out-of-band)的简称,带外数据就是一些比较重要的数据,因此上层如果想读取紧急数据,就可以在使用recv函数进行读取,并设置MSG_OOB选项。
与之对应的send函数的第四个参数flags也提供了一个叫做MSG_OOB的选项,上层如果想发送紧急数据,就可以使用send函数进行写入,并设置MSG_OOB选项。
PSH
报文当中的PSH被设置为1,是在告诉对方尽快将你的接收缓冲区当中的数据交付给上层。
我们一般认为:
实际这种说法是不太准确的,其实接收缓冲区和发送缓冲区都有一个水位线的概念。
当报文当中的PSH被设置为1时,实际就是在告知对方操作系统,尽快将接收缓冲区当中的数据交付给上层,尽管接收缓冲区当中的数据还没到达所指定的水位线。这也就是为什么我们使用read/recv函数读取数据时,期望读取的字节数和实际读取的字节数是不一定吻合的。
RST
TCP保证可靠性的机制之一就是确认应答机制。
确认应答机制就是由TCP报头当中的,32位序号和32位确认序号来保证的。需要再次强调的是,确认应答机制不是保证双方通信的全部消息的可靠性,而是通过收到对方的应答消息,来保证自己曾经发送给对方的某一条消息被对方可靠的收到了。
如何理解TCP将每个字节的数据都进行了编号?
TCP是面向字节流的,我们可以将TCP的发送缓冲区和接收缓冲区都想象成一个字符数组。
双方在进行网络通信时,发送方发出去的数据在一个特定的事件间隔内如果得不到对方的应答,此时发送方就会进行数据重发,这就是TCP的超时重传机制。
需要注意的是,TCP保证双方通信的可靠性,一部分是通过TCP的协议报头体现出来的,还有一部分是通过实现TCP的代码逻辑体现出来的。
比如超时重传机制实际就是发送方在发送数据后开启了一个定时器,若是在这个时间内没有收到刚才发送数据的确认应答报文,则会对该报文进行重传,这就是通过TCP的代码逻辑实现的,而在TCP报头当中是体现不出来的。
丢包的两种情况
丢包分为两种情况,一种是发送的数据报文丢失了,此时发送端在一定时间内收不到对应的响应报文,就会进行超时重传。
丢包的另一种情况其实不是发送端发送的数据丢包了,而是对方发来的响应报文丢包了,此时发送端也会因为收不到对应的响应报文,而进行超时重传。
超时重传的等待时间
超时重传的时间不能设置的太长也不能设置的太短。
因此超时重传的时间一定要是合理的,最理想的情况就是找到一个最小的时间,保证“确认应答一定能在这个时间内返回”。但这个时间的长短,是与网络环境有关的。网好的时候重传的时间可以设置的短一点,网卡的时候重传的时间可以设置的长一点,也就是说超时重传设置的等待时间一定是上下浮动的,因此这个时间不可能是固定的某个值。
TCP为了保证无论在任何环境下都能有比较高性能的通信,因此会动态计算这个最大超时时间。
TCP是面向连接的
TCP的各种可靠性机制实际都不是从主机到主机的,而是基于连接的,与连接是强相关的。比如一台服务器启动后可能有多个客户端前来访问,如果TCP不是基于连接的,也就意味着服务器端只有一个接收缓冲区,此时各个客户端发来的数据都会拷贝到这个接收缓冲区当中,此时这些数据就可能会互相干扰。
而我们在进行TCP通信之前需要先建立连接,就是因为TCP的各种可靠性保证都是基于连接的,要保证传输数据的可靠性的前提就是先建立好连接。
操作系统对连接的管理
面向连接是TCP可靠性的一种,只有在通信建立好连接才会有各种可靠性的保证,而一台机器上可能会存在大量的连接,此时操作系统就不得不对这些连接进行管理。
三次握手的过程
双方在进行TCP通信之前需要先建立连接,建立连接的这个过程我们称之为三次握手。
以服务器和客户端为例,当客户端想要与服务器进行通信时,需要先与服务器建立连接,此时客户端作为主动方会先向服务器发送连接建立请求,然后双方TCP在底层会自动进行三次握手。
需要注意的是,客户端向服务器发起的连接建立请求,是请求建立从客户端到服务器方向的通信连接,而TCP是全双工通信,因此服务器在收到客户端发来的连接建立请求后,服务器也需要向客户端发起连接建立请求,请求建立从服务器到客户端方法的通信连接。
为什么是三次握手?
首先我们需要知道,连接建立不是百分之百能成功的,通信双方在进行三次握手时,其中前两次握手能够保证被对方收到,因为前两次握手都有对应的下一次握手对其进行响应,但第三次握手是没有对应的响应报文的,如果第三次握手时客户端发送的ACK报文丢失了,那么连接建立就会失败。
虽然客户端发起第三次握手后就完成了三次握手,但服务器却没有收到客户端发来的第三次握手,此时服务器端就不会建立对应的连接。所以建立连接时不管采用几次握手,最后一次握手的可靠性都是不能保证的。
既然连接的建立都不是百分之百成功的,因此建立连接时具体采用几次握手的依据,实际是看几次握手时的优点更多。
三次握手是验证双方通信信道的最小次数:
三次握手能够保证连接建立时的异常连接挂在客户端:
因此,这里给出两个建立连接时采用三次握手的理由:
三次握手时的状态变化
至此三次握手结束,通信双方可以开始进行数据交互了。
套接字和三次握手之间的关系
四次挥手的过程
由于双方维护连接都是需要成本的,因此当双方TCP通信结束之后就需要断开连接,断开连接的这个过程我们称之为四次挥手。
还是以服务器和客户端为例,当客户端与服务器通信结束后,需要与服务器断开连接,此时就需要进行四次挥手。
四次挥手结束后双方的连接才算真正断开。
为什么是四次挥手?
四次挥手时的状态变化
至此四次挥手结束,通信双方成功断开连接。
套接字和四次挥手之间的关系
CLOSE_WAIT
TIME_WAIT
四次挥手中前三次挥手丢包时的解决方法:
如果客户端在发出第四次挥手后立即进入CLOSED状态,此时服务器虽然进行了超时重传,但已经得不到客户端的响应了,因为客户端已经将连接关闭了。
服务器在经过若干次超时重发后得不到响应,最终也一定会将对应的连接关闭,但在服务器不断进行超时重传期间还需要维护这条废弃的连接,这样对服务器是非常不友好的。
为了避免这种情况,因此客户端在四次挥手后没有立即进入CLOSED状态,而是进入到了TIME_WAIT状态进行等待,此时要是第四次挥手的报文丢包了,客户端也能收到服务器重发的报文然后进行响应。
TIME_WAIT状态存在的必要性:
实际第四次挥手丢包后,可能双方网络状态出现了问题,尽管客户端还没有关闭连接,也收不到服务器重发的连接断开请求,此时客户端TIME_WAIT等若干时间最终会关闭连接,而服务器经过多次超时重传后也会关闭连接。这种情况虽然也让服务器维持了闲置的连接,但毕竟是少数,引入TIME_WAIT状态就是争取让主动发起四次挥手的客户端维护这个成本。
因此TCP并不能完全保证建立连接和断开连接的可靠性,TCP保证的是建立连接之后,以及断开连接之前双方通信数据的可靠性。
TIME_WAIT的等待时长是多少?
TIME_WAIT的等待时长既不能太长也不能太短。
TCP协议规定,主动关闭连接的一方在四次挥手后要处于TIME_WAIT状态,等待两个MSL(Maximum Segment Lifetime,报文最大生存时间)的时间才能进入CLOSED状态。
MSL在RFC1122中规定为两分钟,但是各个操作系统的实现不同,比如在Centos7上默认配置的值是60s。我们可以通过cat /proc/sys/net/ipv4/tcp_fin_timeout
命令来查看MSL的值。
TIME_WAIT的等待时长设置为两个MSL的原因:
TCP支持根据接收端的接收数据的能力来决定发送端发送数据的速度,这个机制叫做流量控制(Flow Control)。
接收端处理数据的速度是有限的,如果发送端发的太快,导致接收端的缓冲区被打满,此时发送端继续发送数据,就会造成丢包,进而引起丢包重传等一系列连锁反应。
因此接收端可以将自己接收数据的能力告知发送端,让发送端控制自己发送数据的速度。
当发送端得知接收端接收数据的能力为0时会停止发送数据,此时发送端会通过以下两种方式来得知何时可以继续发送数据。
16为数字最大表示65535,那TCP窗口最大就是65535吗?
理论上确实是这样的,但实际上TCP报头当中40字节的选项字段中包含了一个窗口扩大因子M,实际窗口大小是窗口字段的值左移M位得到的。
第一次向对方发送数据时如何得知对方的窗口大小?
双方在进行TCP通信之前需要先进行三次握手建立连接,而双方在握手时除了验证双方通信信道是否通畅以外,还进行了其他信息的交互,其中就包括告知对方自己的接收能力,因此在双方还没有正式开始通信之前就已经知道了对方接收数据能力,所以双方在发送数据时是不会出现缓冲区溢出的问题的。
连续发送多个数据
双方在进行TCP通信时可以一次向对方发送多条数据,这样可以将等待多个响应的时间重叠起来,进而提高数据通信的效率。
需要注意的是,虽然双方在进行TCP通信时可以一次向对方发送大量的报文,但不能将自己发送缓冲区当中的数据全部打包发送给对端,在发送数据时还要考虑对方的接收能力。
滑动窗口
发送方可以一次发送多个报文给对方,此时也就意味着发送出去的这部分报文当中有相当一部分数据是暂时没有收到应答的。
其实可以将发送缓冲区当中的数据分为三部分:
这里发送缓冲区的第二部分就叫做滑动窗口。(也有人把这三部分整体称之为滑动窗口,而将其中的第二部分称之为窗口大小)
而滑动窗口描述的就是,发送方不用等待ACK一次所能发送的数据最大量。
滑动窗口存在的最大意义就是可以提高发送数据的效率:
当发送方发送出去的数据段陆陆续续收到对应的ACK时,就可以将收到ACK的数据段归置到滑动窗口的左侧,并根据当前滑动窗口的大小来决定,是否需要将滑动窗口右侧的数据归置到滑动窗口当中。
TCP的重传机制要求暂时保存发出但未收到确认的数据,而这部分数据实际就位于滑动窗口当中,只有滑动窗口左侧的数据才是可以被覆盖或删除的,因为这部分数据才是发送并被对方可靠的收到了,所以滑动窗口除了限定不收到ACK而可以直接发送的数据之外,滑动窗口也可以支持TCP的重传机制。
滑动窗口一定会整体右移吗?
滑动窗口不一定会整体右移的,以刚才的例子为例,假设对方已经收到了1001-2000的数据段并进行了响应,但对方上层一直不从接收缓冲区当中读取数据,此时当对方收到1001-2000的数据段时,对方的窗口大小就由4000变为了3000。
当发送端收到对方的响应序号为2001时,就会将1001-2000的数据段归置到滑动窗口的左侧,但此时由于对方的接收能力变为了3000,而当1001-2000的数据段归置到滑动窗口的左侧后,滑动窗口的大小刚好就是3000,因此滑动窗口的右侧不能继续向右进行扩展。
因此滑动窗口在向右移动的过程中并不一定是整体右移的,因为对方接收能力可能不断在变化,从而滑动窗口也会随之不断变宽或者变窄。
如何实现滑动窗口
TCP接收和发送缓冲区都看作一个字符数组,而滑动窗口实际就可以看作是两个指针限定的一个范围,比如我们用 s t a r t start start指向滑动窗口的左侧, e n d end end指向的是滑动窗口的右侧,此时在 s t a r t start start和 e n d end end区间范围内的就可以叫做滑动窗口。
当发送端收到对方的响应时,如果响应当中的确认序号为 x x x,窗口大小为 w i n win win,此时就可以将start更新为 x x x,而将 e n d end end更新为 s t a r t + w i n start+win start+win。
丢包问题
当发送端一次发送多个报文数据时,此时的丢包情况也可以分为两种。
情况一: 数据包已经抵达,ACK丢包。
在发送端连续发送多个报文数据时,部分ACK丢包并不要紧,此时可以通过后续的ACK进行确认。
比如图中2001-3000和4001-5000的数据包对应的ACK丢失了,但只要发送端收到了最后5001-6000数据包的响应,此时发送端也就知道2001-3000和4001-5000的数据包实际上被接收端收到了的,因为如果接收方没有收到2001-3000和4001-5000的数据包是设置确认序号为6001的,确认序号为6001的含义就是序号为1-6000的字节数据我都收到了,你下一次应该从序号为6001的字节数据开始发送。
这种机制被称为“高速重发控制”,也叫做“快重传”。
需要注意的是,快重传需要在大量的数据重传和个别的数据重传之间做平衡,实际这个例子当中发送端并不知道是1001-2000这个数据包丢了,当发送端重复收到确认序号为1001的响应报文时,理论上发送端应该将1001-7000的数据全部进行重传,但这样可能会导致大量数据被重复传送,所以发送端可以尝试先把1001-2000的数据包进行重发,然后根据重发后的得到的确认序号继续决定是否需要重发其它数据包。
滑动窗口中的数据一定都没有被对方收到吗?
滑动窗口当中的数据是可以暂时不用收到对方确认的数据,而不是说滑动窗口当中的数据一定都没有被对方收到,滑动窗口当中可能有一部分数据已经被对方收到了,但可能因为滑动窗口内靠近滑动窗口左侧的一部分数据,在传输过程中出现了丢包等情况,导致后面已经被对方收到的数据得不到响应。
例如图中的1001-2000的数据包如果在传输过程中丢包了,此时虽然2001-5000的数据都被对方收到了,此时对方发来的确认序号也只能是1001,当发送端补发了1001-2000的数据包后,对方发来的确认序号就会变为5001,此时发送缓冲区当中1001-5000的数据也会立马被归置到滑动窗口的左侧。
快重传 VS 超时重传
为什么会有拥塞控制?
两个主机在进行TCP通信的过程中,出现个别数据包丢包的情况是很正常的,此时可以通过快重传或超时重发对数据包进行补发。但如果双方在通信时出现了大量丢包,此时就不能认为是正常现象了。
TCP不仅考虑了通信双端主机的问题,同时也考虑了网络的问题。
双方网络通信时出现少量的丢包TCP是允许的,但一旦出现大量的丢包,此时量变引起质变,这件事情的性质就变了,此时TCP就不再推测是双方接收和发送数据的问题,而判断是双方通信信道网络出现了拥塞问题。
如何解决网络拥塞问题?
网络出现大面积瘫痪时,通信双方作为网络当中两台小小的主机,看似并不能为此做些什么,但“雪崩的时候没有一片雪花是无辜的”,网络出现问题一定是网络中大部分主机共同作用的结果。
需要注意的是,网络拥塞时影响的不只是一台主机,而几乎是该网络当中的所有主机,此时所有使用TCP传输控制协议的主机都会执行拥塞避免算法。
因此拥塞控制看似只是谈论的一台主机上的通信策略,实际这个策略是所有主机在网络崩溃后都会遵守的策略。一旦出现网络拥塞,该网络当中的所有主机都会受到影响,此时所有主机都要执行拥塞避免,这样才能有效缓解网络拥塞问题。通过这样的方式就能保证雪崩不会发生,或雪崩发生后可以尽快恢复。
拥塞控制
虽然滑动窗口能够高效可靠的发送大量的数据,但如果在刚开始阶段就发送大量的数据,就可能会引发某些问题。因为网络上有很多的计算机,有可能当前的网络状态就已经比较拥塞了,因此在不清楚当前网络状态的情况下,贸然发送大量的数据,就可能会引起网络拥塞问题。
因此TCP引入了慢启动机制,在刚开始通信时先发少量的数据探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据。
每收到一个ACK应答拥塞窗口的值就加一,此时拥塞窗口就是以指数级别进行增长的,如果先不考虑对方接收数据的能力,那么滑动窗口的大家就只取决于拥塞窗口的大小,此时拥塞窗口的大小变化情况如下:
拥塞窗口 | 滑动窗口 |
---|---|
1= 2 0 2^0 20 | 1 |
1+1= 2 1 2^1 21 | 2 |
2+2= 2 2 2^2 22 | 4 |
4+4= 2 3 2^3 23 | 8 |
… | … |
但指数级增长是非常快的,因此“慢启动”实际只是初始时比较慢,但越往后增长的越快。如果拥塞窗口的值一直以指数的方式进行增长,此时就可能在短时间内再次导致网络出现拥塞。
主机在进行网络通信时,实际就是在不断进行指数增长、加法增大和乘法减小。
需要注意的是,不是所有的主机都是同时在进行指数增长、加法增大和乘法减小的。每台主机认为拥塞窗口的大小不一定是一样的,即便是同区域的两台主机在同一时刻认为拥塞窗口的大小也不一定是完全相同的。因此在同一时刻,可能一部分主机正在进行正常通信,而另一部分主机可能已经发生网络拥塞了。
如果接收数据的主机收到数据后立即进行ACK应答,此时返回的窗口可能比较小。
需要注意的是,延迟应答的目的不是为了保证可靠性,而是留出一点时间让接收缓冲区中的数据尽可能被上层应用层消费掉,此时在进行ACK响应的时候报告的窗口大小就可以更大,从而增大网络吞吐量,进而提高数据的传输效率。
此外,不是所有的数据包都可以延迟应答。
延迟应答具体的数量和超时时间,依操作系统不同也有差异,一般N取2,超时时间取200ms。
捎带应答其实是TCP通信时最常规的一种方式,就好比主机A给主机B发送了一条消息,当主机B收到这条消息后需要对其进行ACK应答,但如果主机B此时正好也要给主机A发生消息,此时这个ACK就可以搭顺风车,而不用单独发送一个ACK应答,此时主机B发送的这个报文既发送了数据,又完成了对收到数据的响应,这就叫做捎带应答。
捎带应答最直观的角度实际也是发送数据的效率,此时双方通信时就可以不用再发送单纯的确认报文了。
此外,由于捎带应答的报文携带了有效数据,因此对方收到该报文后会对其进行响应,当收到这个响应报文时不仅能够确保发送的数据被对方可靠的收到了,同时也能确保捎带的ACK应答也被对方可靠的收到了。
当创建一个TCP的socket时,同时在内核中会创建一个发送缓冲区和一个接收缓冲区。
由于缓冲区的存在,TCP程序的读和写不需要一一匹配,例如:
实际对于TCP来说,它并不关心发送缓冲区当中的是什么数据,在TCP看来这些只是一个个的字节数据,它的任务就是将这些数据准确无误的发送到对方的接收缓冲区当中就行了,而至于如何解释这些数据完全由上层应用来决定,这就叫做面向字节流。
什么是粘包?
如何解决粘包问题
要解决粘包问题,本质就是要明确报文和报文之间的边界。
UDP是否存在粘包问题?
因此UDP是不存在粘包问题的,根本原因就是UDP报头当中的16位UDP长度记录的UDP报文的长度,因此UDP在底层的时候就把报文和报文之间的边界明确了,而TCP存在粘包问题就是因为TCP是面向字节流的,TCP报文之间没有明确的边界。
进程终止
当客户端正常访问服务器时,如果客户端进程突然崩溃了,此时建立好的连接会怎么样?
当一个进程退出时,该进程曾经打开的文件描述符都会自动关闭,因此当客户端进程退出时,相当于自动调用了close函数关闭了对应的文件描述符,此时双方操作系统在底层会正常完成四次挥手,然后释放对应的连接资源。也就是说,进程终止时会释放文件描述符,TCP底层仍然可以发送FIN,和进程正常退出没有区别。
机器重启
当客户端正常访问服务器时,如果将客户端主机重启,此时建立好的连接会怎么样?
当我们选择重启主机时,操作系统会先杀掉所有进程然后再进行关机重启,因此机器重启和进程终止的情况是一样的,此时双方操作系统也会正常完成四次挥手,然后释放对应的连接资源。
机器掉电/网线断开
当客户端正常访问服务器时,如果将客户端突然掉线了,此时建立好的连接会怎么样?
当客户端掉线后,服务器端在短时间内无法知道客户端掉线了,因此在服务器端会维持与客户端建立的连接,但这个连接也不会一直维持,因为TCP是有保活策略的。
其中服务器定期询问客户端的存在状态的做法,叫做基于保活定时器的一种心跳机制,是由TCP实现的。此外,应用层的某些协议,也有一些类似的检测机制,例如基于长连接的HTTP,也会定期检测对方的存在状态。
TCP协议这么复杂就是因为TCP既要保证可靠性,同时又尽可能的提高性能。
可靠性:
提高性能:
需要注意的是,TCP的这些机制有些能够通过TCP报头体现出来的,但还有一些是通过代码逻辑体现出来的。
TCP定时器
此外,TCP当中还设置了各种定时器。
理解传输控制协议
TCP的各种机制实际都没有谈及数据真正的发送,这些都叫做传输数据的策略。TCP协议是在网络数据传输当中做决策的,它提供的是理论支持,比如TCP要求当发出的报文在一段时间内收不到ACK应答就应该进行超时重传,而数据真正的发送实际是由底层的IP和MAC帧完成的。
TCP做决策和IP+MAC做执行,我们将它们统称为通信细节,它们最终的目的就是为了将数据传输到对端主机。而传输数据的目的是什么则是由应用层决定的。因此应用层决定的是通信的意义,而传输层及其往下的各层决定的是通信的方式。
常见的基于TCP的应用层协议如下:
当然,也包括你自己写TCP程序时自定义的应用层协议。
谈谈云服务器
SSH也就是Xshell的底层协议,我们使用Xshell时实际就是使用Xshell的ssh客户端连接我们的云服务器。
我们在使用Xshell时,可以通过ssh 用户名@主机名(IP地址)
方式连接云服务器。实际就是因为我们的云服务器当中存在sshd这样的服务。
这实际就是ssh服务的服务器端,我们使用的ssh 用户名@主机名(IP地址)
命令当中的ssh实际是ssh的客户端,因此我们连接云服务器时本质是在用ssh的客户端连接ssh的服务器。
使用netstat
命令可以看到对应的ssh服务。
我们在云服务器上敲出的各种命令,最终会通过网络套接字的方式发送给服务器,由服务器来对我们的命令进行各种解释,进而执行对应的动作。