pytorch 实战测试——MNIST 手写数字识别

代码实现

工具类代码

# 文件名 utils01
import torch
from matplotlib import pyplot as plt


# 将列表中对应数据画出来
def plot_curve(ls):
    fig = plt.figure()
    palette = plt.get_cmap('Set1')
    # 读取数据,ls = [{'key01': list01}, {'key02': list02}, ...]
    for idx, data in enumerate(ls):
        for key, value in data.items():
            plt.plot(range(len(value)), value, color=palette(idx), label=key)
    plt.legend()
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()


# 展示部分 MNIST 图片
def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i+1)
        plt.tight_layout()
        plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
        plt.title("{}: {}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()


# one hot 编码
def one_hot(label, depth=10):
    out = torch.zeros(label.size(0), depth)
    idx = torch.LongTensor(label).view(-1, 1)
    out.scatter_(dim=1, index=idx, value=1)
    return out

MNIST 测试代码

# 文件名 mnist_test
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision

from utils01 import plot_image, plot_curve, one_hot

batch_size = 512   # 每一批训练数据大小
total_correct = 0  # 总的正确数量
loss_list = []     # 存放使用不同梯度下降算法训练的损失值,内容为字典


# 网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        # 全连接层 wx+b,由于数字有 10 个,所以 fc3 的输出维度为 10
        self.fc1 = nn.Linear(28 * 28, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, 10)

    def forward(self, x):
        x = F.relu(self.fc1(x))   # h1 = relu(xw1 + b1)
        x = F.relu(self.fc2(x))   # h2 = relu(h1w2 + b2)
        x = self.fc3(x)           # h3 = h2w3 + b3

        return x


# 根据 flag 加载 MNIST 数据集,当 flag=True 时为训练的 loader
def get_loader(flag):
    return torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('mnist_data', train=flag, download=True,
                                   transform=torchvision.transforms.Compose(
                                       [torchvision.transforms.ToTensor(),
                                        torchvision.transforms.Normalize(
                                            (0.1307,), (0.3081,))
                                        ])), batch_size=batch_size, shuffle=flag)


# 训练,loader 对应 train_loader,epoch 为训练轮次,
# device 表示 GPU 或 CPU,GD 为梯度下降算法
def train(loader, epoch, device, GD):
    train_loss = []  # 存放本次训练的损失函数值
    for i in range(epoch):
        for batch_idx, (x, y) in enumerate(loader):
            # 把数据 x 展开: [b, 1, 28, 28] => [b, 784]
            # size(0) 获取第一维大小,to(device) 选择将数据存放至 GPU 或 CPU
            x = x.view(x.size(0), 28 * 28).to(device)
            out = net(x)
            y_onehot = one_hot(y).to(device)  # one hot

            # loss = MSE(out, y_onehot)
            # loss = F.mse_loss(out, y_onehot)
            loss = F.cross_entropy(out, y_onehot).to(device)
            optimizer.zero_grad()  # 清除梯度
            loss.backward()        # 反向传播
            optimizer.step()       # 梯度更新

            # loss.item() 将 tensor 类型进行转换
            train_loss.append(loss.item())

            # 打印日志
            if batch_idx % 10 == 0:
                print('{} train epoch {}: [{} / {}]({:.2f}%) loss => {}'.format(
                    GD, i + 1, batch_idx * batch_size, len(train_loader.dataset),
                        (batch_idx * batch_size) / len(train_loader.dataset) * 100, loss.item()))

    loss_list.append({GD: train_loss})  # 损失函数值汇总
    return train_loss


# 测试
def test(loader, total_correct, device, GD):
    for x, y in loader:
        x = x.view(x.size(0), 28 * 28).to(device)
        out = net(x)

        pred = out.argmax(dim=1)
        correct = pred.eq(y.to(device)).sum().float().item()
        total_correct += correct

    total_num = len(loader.dataset)
    acc = total_correct / total_num
    print('{} test acc: {:.2f}%'.format(GD, acc * 100))


# visdom 测试,可通过 pip install visdom 安装 visdom 库
def visdom_test(loss):
    from visdom import Visdom

    viz = Visdom()

    # 先在终端运行 python -m visdom.server
    # 将训练的损失图画出来,以下是 Adam 的损失函数,可根据 loss 的形状获取其余损失值
    viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
    viz.line(np.array(loss[0]['Adam']), np.array(
        [i for i in range(len(loss[0]['Adam']))]), win='train_loss', update='append')


if __name__ == '__main__':
    # 判断 cuda 是否可用
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    # 测试 3 种梯度下降算法,可继续添加
    for GD in ['Adam', 'SGD', 'Adagrad']:
        train_loader = get_loader(True)
        net = Net().to(device)
        if GD == 'Adam':
            optimizer = optim.Adam(net.parameters(), lr=0.01)
        elif GD == 'SGD':
            optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
        elif GD == 'Adagrad':
            optimizer = optim.Adagrad(net.parameters(), lr=0.01)

		# 查看 train_loader 的内容,可将图片和对应的 label 打印出来
        # x, y = next(iter(train_loader))
        # plot_image(x, y, 'image sample')

        # 使用训练数据训练 3 轮,device 表示使用 GPU 或 CPU,梯度下降算法由 GD 指定
        train(train_loader, 3, device, GD)
        test_loader = get_loader(False)
        test(test_loader, total_correct, device, GD)
        print('=' * 50)
    plot_curve(loss_list)
    
    # 测试 visdom 时可将下面注释去掉
    # visdom_test(loss_list)

:数据存放在 CPU 和 GPU 上类型是不同的

测试结果

  • 3 轮训练后损失函数值

pytorch 实战测试——MNIST 手写数字识别_第1张图片

  • 在 visdom 上查看 1 轮训练后 Adam 的损失函数值

pytorch 实战测试——MNIST 手写数字识别_第2张图片

你可能感兴趣的:(pytorch,pytorch,python,深度学习)