POJ 2947 Widget Factory(高斯消元法,解模线性方程组)

Widget Factory
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 3412   Accepted: 1114

Description

The widget factory produces several different kinds of widgets. Each widget is carefully built by a skilled widgeteer. The time required to build a widget depends on its type: the simple widgets need only 3 days, but the most complex ones may need as many as 9 days.

The factory is currently in a state of complete chaos: recently, the factory has been bought by a new owner, and the new director has fired almost everyone. The new staff know almost nothing about building widgets, and it seems that no one remembers how many days are required to build each diofferent type of widget. This is very embarrassing when a client orders widgets and the factory cannot tell the client how many days are needed to produce the required goods. Fortunately, there are records that say for each widgeteer the date when he started working at the factory, the date when he was fired and what types of widgets he built. The problem is that the record does not say the exact date of starting and leaving the job, only the day of the week. Nevertheless, even this information might be helpful in certain cases: for example, if a widgeteer started working on a Tuesday, built a Type 41 widget, and was fired on a Friday,then we know that it takes 4 days to build a Type 41 widget. Your task is to figure out from these records (if possible) the number of days that are required to build the different types of widgets.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers: the number 1 ≤ n ≤ 300 of the different types, and the number 1 ≤ m ≤ 300 of the records. This line is followed by a description of the m records. Each record is described by two lines. The first line contains the total number 1 ≤ k ≤ 10000 of widgets built by this widgeteer, followed by the day of week when he/she started working and the day of the week he/she was fired. The days of the week are given bythe strings `MON', `TUE', `WED', `THU', `FRI', `SAT' and `SUN'. The second line contains k integers separated by spaces. These numbers are between 1 and n , and they describe the diofferent types of widgets that the widgeteer built. For example, the following two lines mean that the widgeteer started working on a Wednesday, built a Type 13 widget, a Type 18 widget, a Type 1 widget, again a Type 13 widget,and was fired on a Sunday.

4 WED SUN
13 18 1 13

Note that the widgeteers work 7 days a week, and they were working on every day between their first and last day at the factory (if you like weekends and holidays, then do not become a widgeteer!).

The input is terminated by a test case with n = m = 0 .

Output

For each test case, you have to output a single line containing n integers separated by spaces: the number of days required to build the different types of widgets. There should be no space before the first number or after the last number, and there should be exactly one space between two numbers. If there is more than one possible solution for the problem, then write `Multiple solutions.' (without the quotes). If you are sure that there is no solution consistent with the input, then write `Inconsistent data.'(without the quotes).

Sample Input

2 3

2 MON THU

1 2

3 MON FRI

1 1 2

3 MON SUN

1 2 2

10 2

1 MON TUE 

3

1 MON WED

3

0 0

Sample Output

8 3

Inconsistent data.

Hint

Huge input file, 'scanf' recommended to avoid TLE.

Source

 
 
 
高斯消元法解模线性方程组,,注意要不断地模7
#include<stdio.h>

#include<algorithm>

#include<iostream>

#include<string.h>

#include<math.h>

using namespace std;



const int MAXN=400;

int a[MAXN][MAXN];//增广矩阵

int x[MAXN];//解集

bool free_x[MAXN];//标记是否是不确定的变元



inline int gcd(int a,int b)

{

    int t;

    while(b!=0)

    {

        t=b;

        b=a%b;

        a=t;

    }

    return a;

}

inline int lcm(int a,int b)

{

    return a/gcd(a,b)*b;//先除后乘防溢出

}



// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,

//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)

//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.

int Gauss(int equ,int var)

{

    int i,j,k;

    int max_r;// 当前这列绝对值最大的行.

    int col;//当前处理的列

    int ta,tb;

    int LCM;

    int temp;

    int free_x_num;

    int free_index;



    for(int i=0;i<=var;i++)

    {

        x[i]=0;

        free_x[i]=true;

    }



    //转换为阶梯阵.

    col=0; // 当前处理的列

    for(k = 0;k < equ && col < var;k++,col++)

    {// 枚举当前处理的行.

// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)

        max_r=k;

        for(i=k+1;i<equ;i++)

        {

            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;

        }

        if(max_r!=k)

        {// 与第k行交换.

            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);

        }

        if(a[k][col]==0)

        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.

            k--;

            continue;

        }

        for(i=k+1;i<equ;i++)

        {// 枚举要删去的行.

            if(a[i][col]!=0)

            {

                LCM = lcm(abs(a[i][col]),abs(a[k][col]));

                ta = LCM/abs(a[i][col]);

                tb = LCM/abs(a[k][col]);

                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加

                for(j=col;j<var+1;j++)

                {

                    a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%7+7)%7;

                }

            }

        }

    }





    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).

    for (i = k; i < equ; i++)

    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.

        if ( a[i][col]  != 0) return -1;

    }

    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.

    // 且出现的行数即为自由变元的个数.

    if (k < var)

    {

        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.

        for (i = k - 1; i >= 0; i--)

        {

            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.

            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.

            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.

            for (j = 0; j < var; j++)

            {

                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;

            }

            if (free_x_num > 1) continue; // 无法求解出确定的变元.

            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.

            temp = a[i][var];

            for (j = 0; j < var; j++)

            {

                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j]%7;

                temp=(temp%7+7)%7;

            }

            x[free_index] = (temp / a[i][free_index])%7; // 求出该变元.

            free_x[free_index] = 0; // 该变元是确定的.

        }

        return var - k; // 自由变元有var - k个.

    }

    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.

    // 计算出Xn-1, Xn-2 ... X0.

    for (i = var - 1; i >= 0; i--)

    {

        temp = a[i][var];

        for (j = i + 1; j < var; j++)

        {

            if (a[i][j] != 0) temp -= a[i][j] * x[j];

            temp=(temp%7+7)%7;

        }

        while (temp % a[i][i] != 0) temp+=7;

        x[i] =( temp / a[i][i])%7 ;

    }

    return 0;

}



int tran(char *s)

{

    if(strcmp(s,"MON")==0)return 1;

    else if(strcmp(s,"TUE")==0) return 2;

    else if(strcmp(s,"WED")==0) return 3;

    else if(strcmp(s,"THU")==0) return 4;

    else if(strcmp(s,"FRI")==0) return 5;

    else if(strcmp(s,"SAT")==0) return 6;

    else return 7;

}

char str1[20];

char str2[20];

int main()

{

  //  freopen("in.txt","r",stdin);

  //  freopen("out.txt","w",stdout);

    int n,m;

    int k;

    int t;

    while(scanf("%d%d",&n,&m)!=EOF)

    {

        if(n==0&&m==0)break;

        memset(a,0,sizeof(a));

        for(int i=0;i<m;i++)

        {

            scanf("%d%s%s",&k,&str1,&str2);

            a[i][n]=((tran(str2)-tran(str1)+1)%7+7)%7;//这里减的顺序很重要,取了绝对值就WA了。

            while(k--)

            {

                scanf("%d",&t);

                t--;

                a[i][t]++;

                a[i][t]%=7;

            }

        }

        int ans=Gauss(m,n);

        if(ans==0)

        {

            for(int i=0;i<n;i++)

               if(x[i]<=2)x[i]+=7;//注意看题意

            for(int i=0;i<n-1;i++)printf("%d ",x[i]);

            printf("%d\n",x[n-1]);

        }

        else if(ans==-1)printf("Inconsistent data.\n");

        else printf("Multiple solutions.\n");

    }

    return 0;

}

 

你可能感兴趣的:(factory)