【周赛复盘】LeetCode第81场双周赛

目录

  • 1、统计星号
    • 1)题目描述
    • 2)原题链接
    • 3)思路解析
    • 4)模板代码
    • 5)算法与时间复杂度
  • 2、统计无向图中无法互相到达点对数
    • 1)题目描述
    • 2)原题链接
    • 3)思路解析
    • 4)模板代码
    • 5)算法与时间复杂度
  • 3、操作后的最大异或和
    • 1)题目描述
    • 2)原题链接
    • 3)思路解析
    • 4)模板代码
    • 5)算法与时间复杂度
  • 4、不同骰子序列的数目
    • 1)题目描述
    • 2)原题链接
    • 3)思路解析
    • 4)模板代码
    • 5)算法与时间复杂度
  • 5、周赛总结

1、统计星号

1)题目描述

给你一个字符串 s ,每 两个 连续竖线'|' 为 一对 。换言之,第一个和第二个 '|' 为一对,第三个和第四个 '|' 为一对,以此类推。
请你返回 不在 竖线对之间,s 中 '*' 的数目。
注意,每个竖线 '|' 都会 恰好 属于一个对。
【周赛复盘】LeetCode第81场双周赛_第1张图片

2)原题链接

LeetCode.6104:统计星号

3)思路解析

  • ( 1 ) (1) (1)先统计出所有*的个数,然后减去两两|之前的*的个数则是答案,使用List存下所有|的下标,进行两两遍历。

4)模板代码

class Solution {
    public int countAsterisks(String s) {
        int n=s.length();
        char[] c=s.toCharArray();
        int ans=0;
        List<Integer> list=new ArrayList<>();
        for (int i=0;i<n;++i){
            char g=c[i];
            if (g=='|') list.add(i);
            if (g=='*') ans++;
        }
        int len=list.size();
        int gg=0;
        for (int i = 0; i <len; i+=2) {
            int l=list.get(i);
            int r=list.get(i+1);
            for (int j = l+1; j <r; j++) {
                if (c[j]=='*') gg++;
            }
        }
        return ans-gg;
    }
}

5)算法与时间复杂度

  算法:模拟
  时间复杂度:遍历一次字符串,复杂度为 O ( n ) O(n) O(n)

2、统计无向图中无法互相到达点对数

1)题目描述

给你一个整数 n,表示一张 无向图 中有 n 个节点,编号为 0n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 aibi 之间有一条 无向 边。
请你返回 无法互相到达 的不同 点对数目 。
【周赛复盘】LeetCode第81场双周赛_第2张图片

2)原题链接

LeetCode.6106:统计无向图中无法互相到达点对数

3)思路解析

  • ( 1 ) (1) (1)并查集的模板题,使用数组w保存额外信息,每个连通块的点的个数,对于每个连通块,所有预期不相连的点的个数为 S S S,这有:
    S = ( l o n g ) ( ( n − w [ i ] ) ∗ w [ i ] S=(long)((n-w[i])*w[i] S=(long)((nw[i])w[i]
    由于答案不考虑顺序,两个点只视为一种答案,所以最后答案会翻倍,我们需要把每个连通块得到的 S S S相加再除以 2 2 2
  • ( 2 ) (2) (2)我们发现,确实本质就是求一下每个连通块的大小,所以我们无论用DFS还是BFS也都非常好写。

4)模板代码

class Solution {
    int N=100010;
    int[] q=new int[N];
    int[] w=new int[N];
    public long countPairs(int n, int[][] edges) {
        for (int i = 0; i < n; i++) {
            q[i]=i;
            w[i]=1;
        }
        for (int[] g:edges){
            int a=g[0];
            int b=g[1];
            a=find(a);
            b=find(b);
            if (a!=b){
                q[a]=b;
                w[b]+=w[a];
            }
        }
        long ans=0;
         Set<Integer> set=new HashSet<>();
         for (int i = 0; i < n; i++) {
            int a=find(i);
            if (set.contains(a)) continue;
            ans+= (long)(n -w[a]) *w[a];
            set.add(a);
        }
        return ans/2;
    }
    int find(int x){
        if (q[x]!=x) q[x]=find(q[x]);
        return q[x];
    }
}

5)算法与时间复杂度

  算法:并查集、BFS、DFS
  时间复杂度:不进行具体分析

3、操作后的最大异或和

1)题目描述

给你一个下标从 0 开始的整数数组 nums 。一次操作中,选择 任意 非负整数 x 和一个下标 i更新 nums[i]nums[i] AND (nums[i] XOR x)
注意,AND 是逐位与运算,XOR 是逐位异或运算。
请你执行 任意次 更新操作,并返回 nums 中所有元素 最大 逐位异或和。
【周赛复盘】LeetCode第81场双周赛_第3张图片

2)原题链接

LeetCode.6105:操作后的最大异或和

3)思路解析

  • ( 1 ) (1) (1)对于位运算操作,我们可知与其二进制有关,而二进制在数据范围内不会超过32位。二进制中位与位之间是相互独立互不影响的,为了发现规律我们去考虑每一位二进制位的情况。
  • ( 2 ) (2) (2)假设我们考虑第 y y y位,由于是二进制,所以 y y y的值只可能是 0 0 0或者 1 1 1,此时我们假设 y y y为0,那么则有 0 A N D ( 0 X O R x ) 0AND(0XORx) 0AND(0XORx),因为 0 0 0与上任何值都为 0 0 0,所以无论x为多少该位都只能是 0 0 0,如果假设 y y y 1 1 1,则有 1 A N D ( 0 X O R x ) 1AND(0XORx) 1AND(0XORx),这种情况则需要进行讨论,如果 x x x 1 1 1,这最后结果为 1 1 1,否则为 0 0 0
  • ( 3 ) (3) (3)由此我们发现,当某个数的二进制的第 y y y位是 0 0 0时,它无法改变,当第 y y y位是 1 1 1时,它可以变成 0 0 0。对于数组内的所有数,如果存在某个数的第 y y y位为 1 1 1,那我们一定可以保证其他数的第 y y y位均是 0 0 0或者变成 0 0 0。使得所有数在异或后保证第 y y y位为 1 1 1。为了让值更大,就要保证更多的 1 1 1,我们去判断每个位是否都有 1 1 1即可,即将所有数或上即是答案。

4)模板代码

class Solution {
   public int maximumXOR(int[] nums) {  
       int n=nums.length;
       int g=nums[0];
       for(int i=1;i<n;++i) g|=nums[i];
       return g;
    }
}

5)算法与时间复杂度

  算法:位运算
  时间复杂度:遍历一遍数组为 O ( n ) O(n) O(n)

4、不同骰子序列的数目

1)题目描述

给你一个整数 n 。你需要掷一个 6 面的骰子 n 次。请你在满足以下要求的前提下,求出 不同 骰子序列的数目:
1、序列中任意 相邻 数字的 最大公约数1
2、序列中 相等 的值之间,至少有 2 个其他值的数字。正式地,如果第 i 次掷骰子的值 等于j 次的值,那么 abs(i - j) > 2
请你返回不同序列的 总数目 。由于答案可能很大,请你将答案对 1 0 9 + 7 10^9+7 109+7取余 后返回。
如果两个序列中至少有一个元素不同,那么它们被视为不同的序列。

2)原题链接

LeetCode.6107:不同骰子序列的数目

3)思路解析

  • ( 1 ) (1) (1)一眼肯定是线性 d p dp dp问题,考虑到第 i i i次扔骰子被第 i − 1 i-1 i1 i − 2 i-2 i2次有关,我们需要使用三维 d p dp dp存储状态方便转移。定义 f [ i ] [ k ] [ u ] f[i][k][u] f[i][k][u]为第 i i i次扔的点数为 u u u,第 i − 1 i-1 i1次为 k k k的方案数。
  • ( 2 ) (2) (2)我们可以先预处理出哪些点数是可以作为相邻的点的,对于第 i i i次丢筛子然后再去三重循环枚举 j , k , u j,k,u j,k,u,在判断符合的情况下,有转移方程:
    f [ i ] [ j ] [ k ] = ( f [ i ] [ j ] [ k ] + f [ i − 1 ] [ u ] [ j ] ) f[i][j][k] = (f[i][j][k] + f[i-1][u][j]) f[i][j][k]=(f[i][j][k]+f[i1][u][j])

4)模板代码

class Solution {
    int N=10010;
    int[][][] f=new int[N][7][7];
    boolean[][] st=new boolean[7][7];
    int mod=1000000007;
   public int distinctSequences(int n) {
       if (n==1) return 6;
       for (int i = 1; i <=6; i++) {
           for (int j = 1; j <=6; j++) {
               if (i!=j&&gcd(i,j)==1){
                   f[2][i][j]=1;
                   st[i][j]=true;
               }
           }
       }
       for (int i = 3; i <=n; i++) {
           for (int j = 1; j <=6; j++) {
               for (int k = 1; k <=6; k++) {
                   if (st[j][k]&&j!=k){
                       for (int u = 1; u <=6; u++) {
                           if (st[u][j]&&k!=u&&j!=u){
                               f[i][j][k] = (f[i][j][k] + f[i-1][u][j]) % mod;
                           }
                       }
                   }
               }
           }
       }
       int res=0;
       for (int i = 1; i <=6; i++) {
           for (int j = 1; j <=6; j++) {
               res=(res+f[n][i][j])%mod;
           }
       }
       return res;
   }
   int gcd(int a,int b){
       return b==0?a:gcd(b,a%b);
   }
}

5)算法与时间复杂度

  算法:dp
  时间复杂度: O ( n m 3 ) O(nm^3) O(nm3),该处 m m m为6,因为筛子只有6个面。

5、周赛总结

  第三题不会位运算分析,第四题不写三维 d p dp dp,我是 s b sb sb

你可能感兴趣的:(《力扣周赛题解》,leetcode,算法,深度优先,java,贪心算法)