#今日论文推荐# 中科院、华为等提出Vision GNN,只使用图神经网络进行视觉任务

#今日论文推荐# 中科院、华为等提出Vision GNN,只使用图神经网络进行视觉任务

网络结构在基于深度学习的计算机视觉系统中起着至关重要的作用。目前广泛应用的卷积神经网络和卷积神经转换器将图像视为网格或序列结构,难以灵活地捕捉不规则和复杂的目标。本文提出将图像表示为图(Graph)结构,并引入一种新的视觉图卷积(Vision GNN, ViG)体系结构来提取视觉任务的图级(Graph-Level)特征。首先,将图像分割为多个块(patch),这些块被视为节点,并通过连接最近的邻居节点来构建一个图。基于图像的图表示(graph representation),通过建立 ViG 模型来实现所有节点之间的信息变换和交换。ViG 由两个基本模块组成:带有图卷积的Grapher模块,用于聚合和更新图信息;以及两层线性层的 FFN 模块(就是 MLP),用于节点特征变换。在不同的模型尺寸下,分别建立了各向同性(isotropic)结构和金字塔( pyramid)结构。
在图像识别和目标检测任务上的大量实验证明了提出的 ViG 架构的优越性。希望本研究能对一般视觉任务上的神经网络进行开创性的研究,为今后的研究提供有益的启示和经验。

论文题目:Vision GNN: An Image is Worth Graph of Nodes
详细解读:https://www.aminer.cn/research_report/62abfb527cb68b460fd48be2?download=falseicon-default.png?t=M4ADhttps://www.aminer.cn/research_report/62abfb527cb68b460fd48be2?download=false
AMiner链接:https://www.aminer.cn/?f=cs

你可能感兴趣的:(深度学习,transformer,深度学习,计算机视觉)